9 research outputs found

    The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove

    Get PDF
    Experimental results are presented on the emissions from a single combustion chamber stove burning wood, coal and processed fuels. This technique was used to permit comparisons to be made of the influence of different fuel types without it being influenced by the effects of secondary combustion. Measurements were made of CO, NOx and fine particulates during the major phases of combustion, namely flaming and smouldering. Measurements of the particulates were made in two ways: firstly using a gravimetric total particulate measurement and secondly using a cyclone technique to give PM2.5 and PM10 size fractions. Smoke emissions from the different fuels were very dependent on the phase of combustion especially for the total particulate results, where flaming phase emissions were much higher than in the smouldering phase. It was found that the particulate emission factors for the wood fuels were dependent on the volatile content whilst the coals followed a different pattern. NOx was linearly dependent on the fuel-N content for all the fuel types, but the relationship for biomass is different from that for coal. CO emissions were very dependent on the combustion phase

    A study of smoke formation from wood combustion

    Get PDF
    Aerosol time of flight mass spectrometry (ATOFMS) was used to analyse the particles emitted during the flaming and smouldering phases of the combustion of samples of hard and soft woods. Eugenol and furfural were also burned and using results from previous work of the authors, they have been shown to be useful proxies for initial wood combustion products. The ratios of elementary carbon to total carbon in the particles were similar for both the woods and for eugenol. The ATOFMS spectra of most of the particles were consistent with the presence of soot precursor constituents along with oxygen containing fragments. Most particle diameters were less than 2.5. μm, with the greatest concentration of <. 0.12. μm

    Combustion and pyrolysis reactions of alkylated polycyclic aromatic compounds: The decomposition of 13C methylarenes in relation to diesel engine emissions

    Get PDF
    The thermal decomposition of methylarenes labelled with 13C in the methyl group was investigated. This was conducted using both a direct injection diesel engine and a pyrolysis flow cell connected to a GC-MS. 2-[13C]methylnaphthalene and 9-[13C]methylphenanthrene were synthesized by means of the Corey-House coupling reaction and their identity and purity confirmed by mass spectrometry and NMR. GC-MS analysis of the aromatic fraction separated from the extract of the exhaust particulate collected from the engine operated with n-hexadecane doped with the labelled methylnaphthalene showed that the 13C was not redistributed among the methyl groups of higher PAH. However, with 9-[13C]methylphenanthrene in the fuel a significant amount was retained in the particulate, even though the principal in-cylinder reaction was dealkylation. Pyrolytic reactions of the 13C-labelled methyl arenes were studied in a micro-pyrolysis-GC-MS-apparatus and confirmed dealkylation as the predominant reaction. The detailed chemical mechanism of the pyrolysis was explained by a scheme involving two alternative radical transfer reactions

    PAH emissions from an African cookstove

    Get PDF
    Combustion of wood and other biomass is a significant contributor to poor air quality in many developing countries. Emissions of particulates and Polycyclic Aromatic Hydrocarbons (PAH) are a major health hazard, particularly in Africa where the use of domestic cookstoves has increased alongside population expansion. Because of economic factors firewood is commonly used in place of the more expensive charcoal; particularly in rural areas. This work conducts a study of PAH emissions from an African cookstove comparing the combustion of both charcoal and firewood. It is demonstrated that PAH and particulate emissions are much higher from the firewood compared to the charcoal. The difference in levels can be interpreted due to the importance of the pyrolysis reactions of the volatile components of wood in PAH formation, whereas these volatiles emissions are much smaller from charcoal. Analysis of the combustion phases (flaming, smouldering) is undertaken and a computer model has been developed to link the composition of the fuels to the emissions of the PAH and particulates. The modelled PAH levels are shown to follow a similar trend to the experimental results
    corecore