351 research outputs found
Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition
In this paper we investigate the effect of stochasticity in the spatial and
temporal distribution of supernova remnants on the spectrum and chemical
composition of cosmic rays observed at Earth. The calculations are carried out
for different choices of the diffusion coefficient D(E) experienced by cosmic
rays during propagation in the Galaxy. In particular, at high energies we
assume that D(E)\sim E^{\delta}, with and being the
reference scenarios. The large scale distribution of supernova remnants in the
Galaxy is modeled following the distribution of pulsars, with and without
accounting for the spiral structure of the Galaxy. We find that the stochastic
fluctuations induced by the spatial and temporal distribution of supernovae,
together with the effect of spallation of nuclei, lead to mild but sensible
violations of the simple, leaky-box-inspired rule that the spectrum observed at
Earth is with , where
is the slope of the cosmic ray injection spectrum at the sources. Spallation of
nuclei, even with the small rates appropriate for He, may account for slight
differences in spectral slopes between different nuclei, providing a possible
explanation for the recent CREAM observations. For we find that
the slope of the proton and helium spectra are and
respectively at energies above 1 TeV (to be compared with the measured values
of and ). For the hardening of the He
spectra is not observed. We also comment on the effect of time dependence of
the escape of cosmic rays from supernova remnants, and of a possible clustering
of the sources in superbubbles. In a second paper we will discuss the
implications of these different scenarios for the anisotropy of cosmic rays.Comment: 28 pages, To appear in JCA
Understanding hadronic gamma-ray emission from supernova remnants
We aim to test the plausibility of a theoretical framework in which the
gamma-ray emission detected from supernova remnants may be of hadronic origin,
i.e., due to the decay of neutral pions produced in nuclear collisions
involving relativistic nuclei. In particular, we investigate the effects
induced by magnetic field amplification on the expected particle spectra,
outlining a phenomenological scenario consistent with both the underlying
Physics and the larger and larger amount of observational data provided by the
present generation of gamma experiments, which seem to indicate rather steep
spectra for the accelerated particles. In addition, in order to study to study
how pre-supernova winds might affect the expected emission in this class of
sources, the time-dependent gamma-ray luminosity of a remnant with a massive
progenitor is worked out. Solid points and limitations of the proposed scenario
are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added.
Some typos correcte
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
The interaction of brain regions during visual search processing as revealed by transcranial magnetic stimulation
Although it has long been known that right posterior parietal cortex (PPC) has a role in certain visual search tasks, and human motion area V5 is involved in processing tasks requiring attention to motion, little is known about how these areas may interact during the processing of a task requiring the speciality of each. Using transcranial magnetic stimulation (TMS), this study first established the specialization of each area in the form of a double dissociation; TMS to right PPC disrupted processing of a color/form conjunction and TMS to V5 disrupted processing of a motion/form conjunction. The key finding of this study is, however, if TMS is used to disrupt processing of V5 at its critical time of activation during the motion/form conjunction task, concurrent disruption of right PPC now has a significant effect, where TMS at PPC alone does not. Our findings challenge the conventional interpretation of the role of right PPC in conjunction search and spatial attention
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Magnetic fields in cosmic particle acceleration sources
We review here some magnetic phenomena in astrophysical particle accelerators
associated with collisionless shocks in supernova remnants, radio galaxies and
clusters of galaxies. A specific feature is that the accelerated particles can
play an important role in magnetic field evolution in the objects. We discuss a
number of CR-driven, magnetic field amplification processes that are likely to
operate when diffusive shock acceleration (DSA) becomes efficient and
nonlinear. The turbulent magnetic fields produced by these processes determine
the maximum energies of accelerated particles and result in specific features
in the observed photon radiation of the sources. Equally important, magnetic
field amplification by the CR currents and pressure anisotropies may affect the
shocked gas temperatures and compression, both in the shock precursor and in
the downstream flow, if the shock is an efficient CR accelerator. Strong
fluctuations of the magnetic field on scales above the radiation formation
length in the shock vicinity result in intermittent structures observable in
synchrotron emission images. Resonant and non-resonant CR streaming
instabilities in the shock precursor can generate mesoscale magnetic fields
with scale-sizes comparable to supernova remnants and even superbubbles. This
opens the possibility that magnetic fields in the earliest galaxies were
produced by the first generation Population III supernova remnants and by
clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
Geology of the Tarif 1:100 000 map sheet, 100-20, United Arab Emirates
This Sheet Description describes the Quaternary and solid geology of the Tarif 1:100 000 scale geological map. The Tarif district includes the northern coast of the UAE between the outskirts of Mirfa in the west and a point about 23 km west of the settlement of Tarif.
The onshore part of the sheet extends a maximum of about 11.5 km south from the coast and is traversed by the main coastal road. The entire island of Abu Al Abyadh lies within the district, separated from the mainland by up to 5 km of intertidal flats and a narrow, dredged channel about 250 m wide across which a roll-on roll-off ferry provides vehicular access.
The oldest rocks, of Miocene age, crop out in a series of mesas rising above the coastal plain in the south of the district. These consist of the Dam Formation, overlain by the Shuwaihat Formation, which is largely aeolian in origin, and the Baynunah Formation which includes aeolian and fluvial sediments.
The onshore area is a coastal plain dominated by sabkha flats less than 2 m above sea level developed on deflated cemented dune sands of Quaternary age. The northern-most 3–4 kilometres of this flat coastal plane comprise a series of sand sheets forming shallow beach ridges, ‘washover terraces’ and fans with patchy sabkha development. Southwards, the sand sheets pass into an 8–10 kilometre wide zone of low-lying, active sabkha. This zone forms part of a classic, world famous, example of a sabkha and coastal plain and has been extensively studied from both an ecological and geological perspective. In this district much of it has been disturbed by digging and reclamation.
Mesas, generally elongated north-west to south-east because of deflation by the prevailing north westerly Shamal wind, stand up to 25 m above the flats and on the rising ground at the southern limits of the sabkha flats. These are outliers of a former continuous cover of Miocene sand-dominated sequences, including the Shuwaihat and Baynunah formations.
Abu Al Abyadh Island is one of a number of barrier islands that extend from north of Abu Dhabi to Marawah Island, west of the present area. The inlet between the island and the mainland is the eastern part of an open lagoon known as the Khor Al Bazam. In common with other barrier islands, it has a core of Pleistocene aeolian dune sand around which a series of carbonate sand ridges and bars of Holocene age were accreted. These have been deflated in large areas to less than 2 m above sea-level leading to local sabkha development. The island is generally flat but punctuated by small mesas, known locally as zeugen, forming mushroom-shaped outcrops rising up to 4 m and capped with thin marine limestones attributed to the Fuwayrit Formation of late Pleistocene age. Offshore to the north of the island, below low water, is an area of reefs and coral algal sands called the Great Pearl Bank, on account of the former pearling industry in the region
Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts
Crossley et al. (2020)1 examine patterns of change in insect abundance and diversity across US Long-Term Ecological Research (LTER) sites, concluding “a lack of overall increase or decline”. This is notable if true, given mixed conclusions in the literature regarding the nature and ubiquity of insect declines across regions and insect taxonomic groups2–6. The data analyzed, downloaded from and collected by US LTER sites, represent unique time series of arthropod abundances. These long-term datasets often provide critical insights, capturing both steady changes and responses to sudden unpredictable events. However, a number of the included datasets are not suitable for estimating long-term observational trends because they come from experiments or have methodological inconsistencies. Additionally, long-term ecological datasets are rarely uniform in sampling effort across their full duration as a result of the changing goals and abilities of a research site to collect data7. We suggest that Crossley et al.’s results rely upon a key, but flawed, assumption, that sampling was collected “in a consistent way over time within each dataset”. We document problems with data use prior to statistical analyses from eight LTER sites due to datasets not being suitable for long-term trend estimation and not accounting for sampling variation, using the Konza Prairie (KNZ) grasshopper dataset (CGR022) as an example
- …
