Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr College

Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts

Ellen A.R. Welti
Senckenberg Research Institute and Natural History Museum Frankfurt
Anthony Joern
Kansas State University
Aaron M. Ellison
Harvard University
David C. Lightfoot
University of New Mexico
Sydne Record
Bryn Mawr College, srecord@brynmawr.edu

See next page for additional authors

Follow this and additional works at: https://repository.brynmawr.edu/bio_pubs
Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons
Let us know how access to this document benefits you.

Custom Citation

Welti, E.A.R., Joern, A., Ellison, A.M. et al. "Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts." Nat Ecol 5: 589-591.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/bio_pubs/41
For more information, please contact repository@brynmawr.edu.

Authors

Ellen A.R. Welti, Anthony Joern, Aaron M. Ellison, David C. Lightfoot, Sydne Record, Nicholas Rodenhouse,
Emily H. Stanley, and Michael Kaspari

Matters Arising

Response to Crossley et al. 2020

Title

Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts

Authors

Ellen A. R. Welti ${ }^{1^{*}}$, Anthony Joern ${ }^{2}$, Aaron M. Ellison ${ }^{3}$, David C. Lightfoot ${ }^{4}$, Sydne Record ${ }^{5}$, Nicholas Rodenhouse ${ }^{6}$, Emily H. Stanley ${ }^{7}$, Michael Kaspari ${ }^{8}$

Author Affliations

${ }^{1}$ Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
${ }^{2}$ Division of Biology, Kansas State University, Manhattan, KS, USA
${ }^{3}$ Harvard Forest, Harvard University, Petersham, MA, USA
${ }^{4}$ Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, NM, USA
${ }^{5}$ Department of Biology, Bryn Mawr College, Bryn Mawr, PA, USA
${ }^{6}$ Biological Sciences, Wellesley College, Wellesley, MA, USA
${ }^{7}$ Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA
${ }^{8}$ Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA *corresponding author, email: ellen.welti@senckenberg.de

Matters Arising

Crossley et al. (2020) ${ }^{1}$ examine patterns of change in insect abundance and diversity across US Long-Term Ecological Research (LTER) sites, concluding "a lack of overall increase or decline". This is notable if true, given mixed conclusions in the literature regarding the nature and ubiquity of insect declines across regions and insect taxonomic groups ${ }^{2-6}$. The data analyzed, downloaded from and collected by US LTER sites, represent unique time series of arthropod abundances. These long-term datasets often provide critical insights, capturing both steady changes and responses to sudden unpredictable events. However, a number of the included datasets are not suitable for estimating long-term observational trends because they come from experiments or have methodological inconsistencies. Additionally, long-term ecological datasets are rarely uniform in sampling effort across their full duration as a result of the changing goals and abilities of a research site to collect data ${ }^{7}$. We suggest that Crossley et al.'s results rely upon a key, but flawed, assumption, that sampling was collected "in a consistent way over time within each dataset". We document problems with data use prior to statistical analyses from eight LTER sites due to datasets not being suitable for long-term trend estimation and not accounting for sampling variation, using the Konza Prairie (KNZ) grasshopper dataset (CGR022) as an example.

Unsuitable datasets to estimate long-term observational trends

Several of the LTER datasets included in Crossley et al. (2020) either document experiments which have confounding treatment effects or they are too variable in sampling methods to allow for comparison of samples across time. Additionally, in one case, Lepidopteran outbreak dynamics with long intervals (10-13 years) at Hubbard Brook limit power to detect meaningful
trends without extremely long-term data ${ }^{8}$. Datasets from Cedar Creek include arthropods collected in plots with nitrogen addition, herbivore exclosures, and manipulated plant diversity. All three of the datasets from Harvard Forest included in Crossley at al.'s analysis have large methodological inconsistencies over time and one dataset documents ants collected in a canopy manipulation experiment, including one treatment where trees were girdled to simulate hemlock woolly adelgid (Adelges tsugae) infestation of the hemlock trees years prior to the arrival of the invasive insect to the area. One dataset from North Temperate Lakes documents the responses of two crayfish species in a lake where one species was being experimentally removed. With a few exceptions for partial components of these datasets (e.g. control plots in the arce153 Cedar Creek dataset), these data are inappropriate for estimation of long-term observational species trends.

Not accounting for sampling variation: Konza grasshoppers as a case in point

The KNZ CGR022 dataset documents grasshopper species abundances on 15 KNZ watersheds, and spans 1982-present (up to 2015 included in Crossley et al. 2020). Crossley et al. analyze time series of individual species from each dataset (the number of "Time trends" in their Table 1). However, regardless of variant sampling effort, they regularly sum all individuals within LTER datasets to yield a single value of abundance for a given species and year. This is the case for KNZ grasshoppers, and most other included datasets (number of "Sites" in their Table 1). Importantly, sampling effort at KNZ and other LTER sites was not constant. At KNZ, variation occurred in the number of samples per watershed and the number of watersheds in which grasshoppers were collected per year (Fig. 1). Most notably, 6 bison-grazed watersheds were added to KNZ sampling in 2002. Changes in sample numbers over time are documented in the
online metadata (http://Iter.konza.ksu.edu/content/cgr02-sweep-sampling-grasshoppers-konza-prairie-lter-watersheds).

Figure 1. The complex history of sampling of the KNZ grasshopper dataset. The KNZ grasshopper dataset (CGR022) exhibits high variance both in number of watersheds sampled per year (number of bars per year) and number of samples collected within each watershed each year (depicted in color). Other complexities include the tragic loss of four years (1992-1995) of sampling due to a freezer crash, changes in sampling month, changes in watershed burn frequencies, and the reintroduction of bison in the 1990s to six of the later-sampled watersheds.

Accounting for sampling effort and data structure matters (see also Supplementary Information: Fig. S1). At KNZ, bison-grazed watersheds support higher grasshopper abundances and species richness ${ }^{9,10}$. In a recent analysis using the CGR022 dataset, to account for this change in sampling effort, data were combined only from watersheds collected in the same years (e.g. by splitting samples from grazed watersheds into a separate time series) and abundances
within each watershed and year were divided by the number of samples. Analysis of the data structured in this way showed a $>2 \%$ annual decline in grasshopper abundance, with only one common species increasing ${ }^{11}$. Crossley et al., in contrast report most grasshopper species increased in abundance from 1982-2015. The authors of Crossley et al. (2020) note the discrepancy with both this study ${ }^{11}$ and another ${ }^{3}$, and suggest it is "driven by falling numbers of just two once-dominant species... whereas many other formerly rare species have become more abundant and both evenness and species richness have increased". However, we believe the discrepancy arises because Crossley et al. did not account for variable sampling effort, including KNZ's incorporation of additional, more diverse grazed habitats midway in the time series. Similar errors, where data structure was not accounted for, are evident in 17 of the 19 datasets which we examined and were included in Crossley et al. (2020)'s results.

Conclusion

We have thus far been able to confirm issues with data from 8 of the 13 LTER sites (comprising 60% of Table 1's "Time trends") included in Crossley et al. (2020). We note that this is not a comprehensive assessment, as we have only included errors from datasets of which either we ourselves are the PIs or we have been able to confirm with the corresponding LTER PIs and information managers. The eight sites are: Baltimore, Cedar Creek, Central Arizona-Phoenix, Harvard Forest, Hubbard Brook, Konza Prairie, North Temperate Lakes, and Sevilleta. We provide details on dataset unsuitability, mistakes in not accounting for sampling effort, and several coding errors in the Supplementary Information.

Given these mistakes, we urge skepticism regarding Crossley et al. (2020)'s general conclusion of no net decline in insect abundances at US LTER sites in recent decades. Although their goal is laudable, both the use of unsuitable datasets and not taking sampling effort into account generate erroneous estimates of population change. Recently, a study reporting widespread collapse of rainforest insect populations at the LTER site Luquillo necessitated a similar correction ${ }^{5}$. We echo those authors, when they suggest that scientists can avoid errors by reading corresponding metadata. Contacting in advance (or even including as authors) the data providers/field biologists are additionally good practices that ensure appropriate use of the data. Like the ecology they document, it is important to take into account that long-term monitoring efforts by LTERs and similar institutions are themselves complex and full of history.

Author Contributions

E.A.R.W., S. R., A.J., and M.K. conceived the idea for the paper. E.A.R.W. wrote the first draft. A.M.E., D.L., S.R., N.R., and E.S. identified further errors in the Crossley et al. online data. All authors significantly contributed to revisions.

Acknowledgements

Shannon LaDeau, Stevan Earl, Susan Barrott, Elizabeth Borer, and Steve Pennings aided in identifying errors in Crossley et al.'s online data. Karl Roeder provided comments on an early draft of this manuscript. Jeff Taylor aided in identifying changes in Konza watershed names. We thank all LTER information managers and PIs who help keep online metadata updated. We thank Pam Montz, John Haarstad, Amanda Kuhl, Matthew Ayres, Richard Holmes, and the numerous
others who did the hard work to generate these long-term datasets. NSF DEB-1556280 to MK and Konza Prairie LTER NSF DEB-1440484 supported this work.

Competing Interests

The authors declare no competing interests.

Data Availability

KNZ grasshopper abundance data are available from the Long-Term Ecological Research Data Portal (https://doi.org/10.6073/pasta/7b2259dcb0e499447e0e11dfb562dc2f). Citations for the additionally described LTER datasets are provided in the Supplementary Information.

References

1. Crossley, M. S. et al. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nature Ecology \& Evolution (2020) doi:10.1038/s41559-020-12694.
2. Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).
3. van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417-420 (2020).
4. Lister, B. C. \& Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. U. S. A. 115, E10397-E10406 (2018).
5. Willig, M. et al. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. Proceedings of the National Academy of Sciences 116, 1214312144 (2019).
6. Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nature Communications 11, 3486 (2020).
7. Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conservation and Diversity 13, 103-114 (2020).
8. Martinat, P. J. \& Allen, D. C. Saddled prominent outbreaks in North America. Northern Journal of Applied Forestry 5, 88-91 (1988).
9. Welti, E. A. R. et al. Fire, grazing and climate shape plant-grasshopper interactions in a tallgrass prairie. Funct. Ecol. 33, 735-745 (2019).
10. Bruckerhoff, L. A. et al. Harmony on the prairie? Grassland plant and animal community responses to variation in climate across land-use gradients. Ecology 101, e02986 (2020).
11. Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. \& Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl. Acad. Sci. U. S. A. 117, 7271-7275 (2020).
