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Matters Arising 25 

Crossley et al. (2020)1 examine patterns of change in insect abundance and diversity across US 26 

Long-Term Ecological Research (LTER) sites, concluding “a lack of overall increase or 27 

decline”. This is notable if true, given mixed conclusions in the literature regarding the nature 28 

and ubiquity of insect declines across regions and insect taxonomic groups2–6. The data analyzed, 29 

downloaded from and collected by US LTER sites, represent unique time series of arthropod 30 

abundances. These long-term datasets often provide critical insights, capturing both steady 31 

changes and responses to sudden unpredictable events. However, a number of the included 32 

datasets are not suitable for estimating long-term observational trends because they come from 33 

experiments or have methodological inconsistencies. Additionally, long-term ecological datasets 34 

are rarely uniform in sampling effort across their full duration as a result of the changing goals 35 

and abilities of a research site to collect data7. We suggest that Crossley et al.’s results rely upon 36 

a key, but flawed, assumption, that sampling was collected “in a consistent way over time within 37 

each dataset”. We document problems with data use prior to statistical analyses from eight LTER 38 

sites due to datasets not being suitable for long-term trend estimation and not accounting for 39 

sampling variation, using the Konza Prairie (KNZ) grasshopper dataset (CGR022) as an 40 

example.  41 

 42 

Unsuitable datasets to estimate long-term observational trends 43 

Several of the LTER datasets included in Crossley et al. (2020) either document experiments 44 

which have confounding treatment effects or they are too variable in sampling methods to allow 45 

for comparison of samples across time. Additionally, in one case, Lepidopteran outbreak 46 

dynamics with long intervals (10-13 years) at Hubbard Brook limit power to detect meaningful 47 
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trends without extremely long-term data8. Datasets from Cedar Creek include arthropods 48 

collected in plots with nitrogen addition, herbivore exclosures, and manipulated plant diversity. 49 

All three of the datasets from Harvard Forest included in Crossley at al.’s analysis have large 50 

methodological inconsistencies over time and one dataset documents ants collected in a canopy 51 

manipulation experiment, including one treatment where trees were girdled to simulate hemlock 52 

woolly adelgid (Adelges tsugae) infestation of the hemlock trees years prior to the arrival of the 53 

invasive insect to the area. One dataset from North Temperate Lakes documents the responses of 54 

two crayfish species in a lake where one species was being experimentally removed. With a few 55 

exceptions for partial components of these datasets (e.g. control plots in the arce153 Cedar Creek 56 

dataset), these data are inappropriate for estimation of long-term observational species trends. 57 

 58 

Not accounting for sampling variation: Konza grasshoppers as a case in point 59 

The KNZ CGR022 dataset documents grasshopper species abundances on 15 KNZ watersheds, 60 

and spans 1982-present (up to 2015 included in Crossley et al. 2020). Crossley et al. analyze 61 

time series of individual species from each dataset (the number of “Time trends” in their Table 62 

1). However, regardless of variant sampling effort, they regularly sum all individuals within 63 

LTER datasets to yield a single value of abundance for a given species and year. This is the case 64 

for KNZ grasshoppers, and most other included datasets (number of “Sites” in their Table 1). 65 

Importantly, sampling effort at KNZ and other LTER sites was not constant. At KNZ, variation 66 

occurred in the number of samples per watershed and the number of watersheds in which 67 

grasshoppers were collected per year (Fig. 1). Most notably, 6 bison-grazed watersheds were 68 

added to KNZ sampling in 2002. Changes in sample numbers over time are documented in the 69 
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online metadata (http://lter.konza.ksu.edu/content/cgr02-sweep-sampling-grasshoppers-konza-70 

prairie-lter-watersheds).  71 

 72 

 73 

Figure 1. The complex history of sampling of the KNZ grasshopper dataset. The KNZ 74 

grasshopper dataset (CGR022) exhibits high variance both in number of watersheds sampled per 75 

year (number of bars per year) and number of samples collected within each watershed each year 76 

(depicted in color). Other complexities include the tragic loss of four years (1992-1995) of 77 

sampling due to a freezer crash, changes in sampling month, changes in watershed burn 78 

frequencies, and the reintroduction of bison in the 1990s to six of the later-sampled watersheds.  79 

 80 

Accounting for sampling effort and data structure matters (see also Supplementary 81 

Information: Fig. S1). At KNZ, bison-grazed watersheds support higher grasshopper abundances 82 

and species richness9,10. In a recent analysis using the CGR022 dataset, to account for this 83 

change in sampling effort, data were combined only from watersheds collected in the same years 84 

(e.g. by splitting samples from grazed watersheds into a separate time series) and abundances 85 
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within each watershed and year were divided by the number of samples. Analysis of the data 86 

structured in this way showed a >2% annual decline in grasshopper abundance, with only one 87 

common species increasing11. Crossley et al., in contrast report most grasshopper species 88 

increased in abundance from 1982-2015. The authors of Crossley et al. (2020) note the 89 

discrepancy with both this study11 and another3, and suggest it is “driven by falling numbers of 90 

just two once-dominant species… whereas many other formerly rare species have become more 91 

abundant and both evenness and species richness have increased”. However, we believe the 92 

discrepancy arises because Crossley et al. did not account for variable sampling effort, including 93 

KNZ’s incorporation of additional, more diverse grazed habitats midway in the time series. 94 

Similar errors, where data structure was not accounted for, are evident in 17 of the 19 datasets 95 

which we examined and were included in Crossley et al. (2020)’s results. 96 

 97 

Conclusion 98 

We have thus far been able to confirm issues with data from 8 of the 13 LTER sites (comprising 99 

60% of Table 1’s “Time trends”) included in Crossley et al. (2020). We note that this is not a 100 

comprehensive assessment, as we have only included errors from datasets of which either we 101 

ourselves are the PIs or we have been able to confirm with the corresponding LTER PIs and 102 

information managers. The eight sites are: Baltimore, Cedar Creek, Central Arizona-Phoenix, 103 

Harvard Forest, Hubbard Brook, Konza Prairie, North Temperate Lakes, and Sevilleta. We 104 

provide details on dataset unsuitability, mistakes in not accounting for sampling effort, and 105 

several coding errors in the Supplementary Information.  106 

 107 
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Given these mistakes, we urge skepticism regarding Crossley et al. (2020)’s general 108 

conclusion of no net decline in insect abundances at US LTER sites in recent decades. Although 109 

their goal is laudable, both the use of unsuitable datasets and not taking sampling effort into 110 

account generate erroneous estimates of population change. Recently, a study reporting 111 

widespread collapse of rainforest insect populations at the LTER site Luquillo necessitated a 112 

similar correction5. We echo those authors, when they suggest that scientists can avoid errors by 113 

reading corresponding metadata. Contacting in advance (or even including as authors) the data 114 

providers/field biologists are additionally good practices that ensure appropriate use of the data. 115 

Like the ecology they document, it is important to take into account that long-term monitoring 116 

efforts by LTERs and similar institutions are themselves complex and full of history. 117 

 118 
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