37 research outputs found

    First cosmology results using SNe Ia from the dark energy survey: analysis, systematic uncertainties, and validation

    Get PDF
    International audienceWe present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified type Ia supernovae (SNe Ia) from the first three years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.01

    First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters

    Get PDF
    We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)

    Psychological and neural mechanisms of relapse

    No full text
    Relapse, the resumption of drug taking after periods of abstinence, remains the major problem for the treatment of addiction. Even when drugs are unavailable for long periods or when users are successful in curbing their drug use for extended periods, individuals remain vulnerable to events that precipitate relapse. Behavioural studies in humans and laboratory animals show that drug-related stimuli, drugs themselves and stressors are powerful events for the precipitation of relapse. Molecular, neurochemical and anatomical studies have identified lasting neural changes that arise from mere exposure to drugs and other enduring changes that arise from learning about the relationship between drug-related stimuli and drug effects. Chronic drug exposure increases sensitivity of some systems of the brain to the effects of drugs and stressful events. These changes, combined with those underlying conditioning and learning, perpetuate vulnerability to drug-related stimuli. Circuits of the brain involved are those of the mesocorticolimbic dopaminergic system and its glutamatergic connections, and the corticotropin-releasing factor and noradrenergic systems of the limbic brain. This paper reviews advances in our understanding of how these systems mediate the effects of events that precipitate relapse and of how lasting changes in these systems can perpetuate vulnerability to relapse

    The content of unitarity constraints on a pomeron pole of intercept one

    No full text
    We present a consistent picture of a pomeron pole with intercept one, together with its cuts, which evades the decoupling arguments. We use the reggeon cut discontinuity formulae to introduce Gribov's reggeon calculus as an exact solution of multiparticle t-channel unitarity. We show how, within the calculus, two-pomeron iterations of a singular kernel can be responsible for the zero in the triple-pomeron vertex. Using the concept of a bare pomeron pole as a multiperipheral production process which is subsequently renormalised by other effects, we apply the reggeon calculus analysis to inclusive cross sections. We find that the inclusive sum rule decoupling arguments are avoided because of the addition of enhanced absorptive corrections to the conventional Regge pole contributions. However, we show that in this picture the combined pole and two-pomeron cut contribution to the total cross section factories to order (ln s)-2. We also show that, when the correct helicity structure of the pomeron is taken into account, the s-channel unitarity condition for pomeron scattering amplitudes does not lead to any serious decouplings. © 1974
    corecore