818 research outputs found

    Antiferromagnetic ordering in the Kondo lattice system Yb2_2Fe3_3Si5_5

    Full text link
    Compounds belonging to the R2_2Fe3_3Si5_5 series exhibit unusual superconducting and magnetic properties. Although a number of studies have been made on the first reentrant antiferromagnet superconductor Tm2_2Fe3_3Si5_5, the physical properties of Yb2_2Fe3_3Si5_5 are largely unexplored. In this work, we attempt to provide a comprehensive study of bulk properties such as, resistivity, susceptibility and heat-capacity of a well characterized polycrystalline Yb2_2Fe3_3Si5_5. Our measurements indicate that Yb3+^{3+} moments order antiferromagnetically below 1.7 K. Moreover, the system behaves as a Kondo lattice with large Sommerfeld coefficient (γ\gamma) of 0.5~J/Yb mol K2^{2} at 0.3 K, which is well below TN_N. The absence of superconductivity in Yb2_2Fe3_3Si5_5 down to 0.3 K at ambient pressure is attributed to the presence of the Kondo effect.Comment: 10 pages, 3 figures, tex document. A fuller version has appeared in PRB. Here we have omitted the figures showing the crystal structure and the fitting of the X-ray pattern. Also the table with the lattice parameters obtained from fitting has been remove

    Unusual Ground State Properties of the Kondo-Lattice Compound Yb2Ir3Ge5

    Full text link
    We report sample preparation, structure, electrical resistivity, magnetic susceptibility and heat capacity studies of a new compound Yb2_2Ir3_3Ge5_5. We find that this compound crystallizes in an orthorhombic structure with a space group PMMN unlike the compound Ce2_2Ir3_3Ge5_5 which crystallizes in the tetragonal IBAM (U2_2Co3_3Si5_5 type) structure. Our resistivity measurements indicate that the compound Yb2_2Ir3_3Ge5_5 behaves like a typical Kondo lattice system with no ordering down to 0.4 K. However, a Curie-Weiss fit of the inverse magnetic susceptibility above 100 K gives an effective moment of only 3.66 μ\muB_B which is considerably less than the theoretical value of 4.54 μ\muB_B for magnetic Yb3+^3+ ions. The value of θP\theta_{P} = -15.19 K is also considerably higher indicating the presence of strong hybridization. An upturn in the low temperature heat capacity gives an indication that the system may order magnetically just below the lowest temperature of our heat capacity measurements (0.4 K). The structure contains two sites for Yb ions and the present investigation suggests that Yb may be trivalent in one site while it may be significantly lower (close to divalent) in the other.Comment: 9 pages, 4 figures. submitted to Phys. Rev.

    Exclusive Radiative B-Decays in the Light-Cone QCD Sum Rule Approach

    Get PDF
    We carry out a detailed study of exclusive radiative rare BB-decays in the framework of the QCD sum rules on the light cone, which combines the traditional QCD sum rule technique with the description of final state vector mesons in terms of the light-cone wave functions of increasing twist. The decays considered are: Bu,dK+γ,Bu,dρ+γ,Bdω+γB_{u,d} \to K^* +\gamma, B_{u,d}\to \rho+\gamma, B_d\to \omega+\gamma and the corresponding decays of the BsB_s mesons, Bsϕ+γB_s\to \phi+\gamma and BsK+γB_s\to K^*+\gamma. Based on our estimate of the transition form factor F_1^{B \to K^*\pg}(0) =0.32\pm0.05, we find for the branching ratio BR(BK+γ)=(4.8±1.5)×105BR(B \to K^* + \gamma) = (4.8\pm 1.5)\times 10^{-5}, which is in agreement with the observed value measured by the CLEO collaboration. We present detailed estimates for the ratios of the radiative decay form factors, which are then used to predict the rates for the exclusive radiative B-decays listed above. This in principle allows the extraction of the CKM matrix element Vtd|V_{td}| from the penguin-dominated CKM-suppressed radiative decays when they are measured. We give a detailed discussion of the dependence of the form factors on the bb-quark mass and on the momentum transfer, as well as their interrelation with the CKM-suppressed semileptonic decay form factors in Bρ++νB\to \rho+\ell+\nu, which we also calculate in our approach.Comment: 32 pages, 10 uuencoded figures, LaTeX, preprint CERN-TH 7118/9

    Phylogeny and taxonomy of obscure genera of microfungi

    Get PDF
    The recently generated molecular phylogeny for the kingdom Fungi, on which a new classification scheme is based, still suffers from an under representation of numerous apparently asexual genera of microfungi. In an attempt to populate the Fungal Tree of Life, fresh samples of 10 obscure genera of hyphomycetes were collected. These fungi were subsequently established in culture, and subjected to DNA sequence analysis of the ITS and LSU nrRNA genes to resolve species and generic questions related to these obscure genera. Brycekendrickomyces (Herpotrichiellaceae) is introduced as a new genus similar to, but distinct from Haplographium and Lauriomyces. Chalastospora is shown to be a genus in the Pleosporales, with two new species, C. ellipsoidea and C. obclavata, to which Alternaria malorum is added as an additional taxon under its oldest epithet, C. gossypii. Cyphellophora eugeniae is newly described in Cyphellophora (Herpotrichiellaceae), and distinguished from other taxa in the genus. Dictyosporium is placed in the Pleosporales, with one new species, D. streliziae. The genus Edenia, which was recently introduced for a sterile endophytic fungus isolated in Mexico, is shown to be a hyphomycete (Pleosporales) forming a pyronellea-like synanamorph in culture. Thedgonia is shown not to represent an anamorph of Mycosphaerella, but to belong to the Helotiales. Trochophora, however, clustered basal to the Pseudocercospora complex in the Mycosphaerellaceae, as did Verrucisporota. Vonarxia, a rather forgotten genus of hyphomycetes, is shown to belong to the Herpotrichiellaceae and Xenostigmina is confirmed as synanamorph of Mycopappus, and is shown to be allied to Seifertia in the Pleosporales. Dichotomous keys are provided for species in the various genera treated. Furthermore, several families are shown to be polyphyletic within some orders, especially in the Capnodiales, Chaetothyriales and Pleosporales

    Standard and Embedded Solitons in Nematic Optical Fibers

    Full text link
    A model for a non-Kerr cylindrical nematic fiber is presented. We use the multiple scales method to show the possibility of constructing different kinds of wavepackets of transverse magnetic (TM) modes propagating through the fiber. This procedure allows us to generate different hierarchies of nonlinear partial differential equations (PDEs) which describe the propagation of optical pulses along the fiber. We go beyond the usual weakly nonlinear limit of a Kerr medium and derive an extended Nonlinear Schrodinger equation (eNLS) with a third order derivative nonlinearity, governing the dynamics for the amplitude of the wavepacket. In this derivation the dispersion, self-focussing and diffraction in the nematic are taken into account. Although the resulting nonlinear PDEPDE may be reduced to the modified Korteweg de Vries equation (mKdV), it also has additional complex solutions which include two-parameter families of bright and dark complex solitons. We show analytically that under certain conditions, the bright solitons are actually double embedded solitons. We explain why these solitons do not radiate at all, even though their wavenumbers are contained in the linear spectrum of the system. Finally, we close the paper by making comments on the advantages as well as the limitations of our approach, and on further generalizations of the model and method presented.Comment: "Physical Review E, in press

    Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS

    Get PDF
    Attention is drawn to the role played by the size of the system in the thermodynamic analysis of particle yields in relativistic heavy ion collisions at SIS energies. This manifests itself in the non-linear dependence of K+ and K- yields in AAAA collisions at 1 -- 2 A.GeV on the number of participants. It is shown that this dependence can be quantitatively well described in terms of a thermal model with a canonical strangeness conservation. The measured particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also explained in the context of a thermal model with a common freeze-out temperature and chemical potential. Including the concept of collective flow a consistent picture of particle energy distributions is derived with the flow velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure

    Measurement of the Dalitz plot slope parameters for K- -> pi0 pi0 pi- decay using ISTRA+ detector

    Get PDF
    The Dalitz plot slope parameters g, h and k for the K- -> pi0 pi0 pi- decay have been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV negative secondary beam of the U-70 PS. About 252 K events with four-momenta measured for the pi- and four involved photons were used for the analysis. The values obtained g=0.627+/-0.004(stat)+/-0.010(syst), h=0.046+/-0.004(stat)+/-0.012(syst), k=0.001+/-0.001(stat)+/-0.002(syst) are consistent with the world averages dominated by K+ data, but have significantly smaller errors.Comment: LaTeX, 10 pages, 8 eps-figures, update of IHEP 2002-1

    Noise-assisted preparation of entangled atoms

    Full text link
    We discuss the generation of entangled states of two two-level atoms inside an optical cavity. The cavity mode is supposed to be coupled to a white noise with adjustable intensity. We describe how the entanglement between the atoms inside the cavity arise in such a situation. The entanglement is maximized for intermediate values of the noise intensity, while it is a monotonic function of the spontaneous rate. This resembles the phenomenon of stochastic resonance and sheds more light on the idea to exploit white noise in quantum information processing.Comment: 4 pages, 4 figure
    corecore