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Abstract
We carry out a detailed study of exclusive radiative rare B-decays in the framework of
the QCD sum rules on the light cone, which combines the traditional QCD sum rule
technique with the description of final state vector mesons in terms of the light-cone
wave functions of increasing twist. Our calculation is restricted to the leading twist-two
operators. The decays considered are: Bu,d → K∗ + γ, Bu,d → ρ + γ, Bd → ω + γ
and the corresponding decays of the Bs mesons, Bs → φ + γ and Bs → K∗ + γ. Based
on our estimate of the transition form factor FB→K∗

1 (0) = 0.32 ± 0.05, we find for the
branching ratio BR(B → K∗ + γ) = (4.8 ± 1.5) × 10−5, which is in agreement with the
observed value of (4.5±1.5±0.9)×10−5 measured by the CLEO collaboration. We present
detailed estimates for the ratios of the radiative decay form factors, which are then used
to predict the rates for the exclusive radiative B-decays listed above. This in principle
allows the extraction of the CKM matrix element |Vtd| from the penguin-dominated CKM-
suppressed radiative decays when they are measured. We give a detailed discussion of
the dependence of the radiative transition form factors on the b-quark mass and on the
momentum transfer, as well as their interrelation with the CKM-suppressed semileptonic
decay form factors in B → ρ+ ℓ+ νℓ, which we also calculate in our approach.
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1 Introduction

Theoretical interest in rare B-decays lies in the first place in their potential role as preci-
sion tests of the quark sector of the Standard Model (SM). Interpreted within this frame-
work, the eventual measurements of these decays will provide quantitative information
about the top quark mass and more importantly about the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements, Vtd, Vts and Vtb. In particular, the short-distance contribution to
the CKM-suppressed rare B-decays b → d + γ and b → d + ℓ+ℓ− directly measures Vtd.
Together with improved measurements of the CKM matrix elements |Vcb| and |Vub|, this
will determine the CKM unitarity triangle resulting from the constraint

∑
i VidV

∗
ib = 0,

and thus, pin down the CP-violating phases in the Standard Model. These non-trivial
constraints on the CKM unitarity and the importance of rare B-decays in this respect
cannot be overemphasized. At the same time, rare B-decays induced by flavour changing
neutral currents (FCNC) have the potential of providing one of the early hints for non-SM
physics. It is, therefore, imperative to get estimates of these FCNC decays in the SM as
reliable as possible and carry out an experimental physics programme sensitive to rare
B-decays.

The experimental searches for the FCNC B-decays has already provided first divi-
dends. The recent CLEO observation [1] of the rare decay mode B → K⋆ + γ having a
combined branching ratio BR(B → K⋆ + γ) = (4.5 ± 1.5 ± 0.9) × 10−5 and an improved
upper limit on the inclusive branching ratio BR(B → Xs + γ) < 5.4 × 10−4 (95% C.L.)
[2] have been analysed in the SM context, as well as in several SM extensions. Within the
SM, the resulting experimental measurements have been interpreted in terms of upper
and lower limits on the CKM matrix element ratio 0.50 ≤ |Vts|/|Vcb| ≤ 1.67 (at 95% C.L.)
[3].

On general grounds, the most quantitative tests of FCNC processes in B-decays are
the ones involving inclusive measurements such as B → Xd,s + γ and the corresponding
semileptonic and purely leptonic processes such as B → Xd,s + ℓ+ℓ− and Bd,s → ℓ+ℓ−.
Thus, the ratio of inclusive decay rates such as BR(B → Xd +γ)/BR(B → Xs +γ) would
provide one of the cleanest determinations of |Vtd|/|Vts| [4]. However, inclusice branching
ratios are rather difficult to measure. Exclusive decays such as B → ρ+γ, B → ω+γ and
the semileptonic decays B → (π, ρ, ω)ℓ+ℓ− are probably easier to measure, given a large
number of B hadrons and a good electromagnetic detector and particle identification. The
interpretation of these and the already measured decay B → K∗ + γ necessarily needs
reliable estimates of the decay form factors. The decay B → K∗ + γ has received quite a
bit of theoretical attention [5]–[15].

The aim of this paper is to estimate a number of exclusive radiative decays. These
include the CKM-allowed decays, Bu,d → K∗+γ andBs → φ+γ, and the CKM-suppressed
decays, Bu,d → ρ + γ, Bd → ω + γ and Bs → K∗ + γ. While the effective Hamiltonian
approach allows to include short-distance QCD corrections at scales µ2 ≥ m2

b , estimates
of the hadronic matrix elements of the relevant operators necessarily require some non-
perturbative technique. We use here QCD sum rules, which have proved to be a powerful
tool for such purposes, and in their classical form have been introduced in the pioneering
papers by Shifman, Vainshtein and Zakharov [16]. In this paper, we use a modification
of the QCD sum rule approach, which we refer to as QCD sum rules on the light cone.



This technique has been developed originally for light quark systems in [17, 18]. The
application for the heavy meson decays was first suggested and studied in [19].

In this approach, the ideas of duality and matching between the parton and hadron
descriptions, intrinsic to the QCD sum rule framework, are combined with the specific
techniques used in the studies of the hard exclusive processes in QCD [20, 21]. In contrast
to the standard sum rule method for the evaluation of form factors [22, 23], in which the
hadrons in the initial and final state are treated in a symmetric way, we resort to the
QCD sum rule treatment of the initial B-meson only, and describe the outgoing light
vector meson by the set of its wave functions of increasing twist. Hence the operator
product expansion in the light-cone approach is governed by the twist of the operators
rather than by their dimension, and the vacuum expectation values of local operators are
replaced by the light-cone hadron wave functions. A physical motivation of the light-cone
sum rule approach in the present context is an obvious asymmetry of the participating
heavy initial and light final state mesons. The advantage of this formulation is that it
allows to incorporate additional information about high-energy asymptotics of correlation
functions in QCD, which is accumulated in the wave functions. The high energy behaviour
of these functions is related to the (approximate) conformal invariance of QCD, and many
properties and results, following from this approximate invariance and obtained previously,
can be advantageously used in the present context as well. Existing applications of the
light-cone sum rules include the calculations of the amplitudes for the radiative decay
Σ → pγ [17], nucleon magnetic moments [18], the strong couplings gπNN and gρωπ [18],
the semileptonic B-meson [19, 24] and D-meson decay amplitudes [25]. In all these cases
the results have been encouraging.

The principal theoretical result of this paper is a sum rule for the electromagnetic
penguin form factor appearing in the decays B → V + γ, where V is a vector meson. We
derive the corresponding sum rule in the traditional QCD sum rule approach also and
comment on similar existing sum rules in the literature [6]–[8]. We argue that the sum
rules derived in the light-cone approach are more reliable and we calculate the radiative
transition form factors for a number of exclusive radiative B-decays in this framework.
The main numerical results of our work can be summarized as follows:

FB→K∗

1 = 0.32 ± 0.05 F
B→(ρ,ω)
1 = 0.24 ± 0.04

FBs→φ
1 = 0.29 ± 0.05 FBs→K∗

1 = 0.20 ± 0.04
(1)

where the form factor F1 is defined below (eq. (9)). The above estimate for the decay
form factor FB→K∗

1 can be combined with the QCD-improved inclusive radiative branching
ratio BR(B → Xs + γ) = (3.0± 1.2)× 10−4 [3] to yield BR(B → K∗ + γ) = (4.8± 1.5)×
10−5. This agrees fairly well with the corresponding branching ratio measured by the
CLEO collaboration, posted as (4.5 ± 1.5 ± 0.9) × 10−5 [1]. Together with the eventual
measurements of the CKM-suppressed radiative decays Bu,d → ρ + γ, Bd → ω + γ and
Bs → K∗ + γ, the remaining form factors in (1) can then be used to determine the CKM
parameters.

While the main thrust of the paper is on providing theoretical estimates of the ex-
clusive radiative B-decay rates, we also discuss a number of other, related, theoretical
and phenomenological issues. In particular, we discuss in detail the heavy-quark-mass
dependence of the radiative B-decay form factors, and derive the sum rules in the heavy



quark limit. A light-cone QCD sum rule for the semileptonic decay B → ρ + ℓνℓ is also
derived and the relation between radiative and semileptonic form factors is studied.

The paper is organized as follows. In section 2, we review the effective Hamiltonian
for radiative B-decays, dominated by the electromagnetic penguins, and we work out
explicitly the dependence of their rates on the CKM matrix element parameters. A
number of relations involving exclusive and inclusive radiative B-decays is given in this
section. In section 3, we describe the method of the QCD sum rules on the light cone and
derive our general sum rule for the form factors of the electromagnetic penguin operators
entering in the decays B → V + γ. The wave functions of the vector mesons which are
needed to evaluate the sum rule are discussed in section 4, and the numerical estimates
of the form factors are presented in section 5. Section 6 includes the discussion of the
b-quark mass dependence of the form factors, and the heavy quark limit. In section 7
we discuss the q2 dependence and the interrelation of radiative and semileptonic B-decay
form factors in the QCD sum rule approach. Section 8 contains a summary and some
concluding remarks, and the impact of measuring the decays Bd → ω + γ, Bu,d → ρ+ γ
and Bs → K∗ + γ in determining the CKM matrix element |Vtd| is underlined. The
traditional three-point QCD sum rule for the radiative B-decay B → K∗ + γ is derived
and discussed in the appendix.

2 Effective Hamiltonian for inclusive and

exclusive radiative B-decays

In this section we review the theoretical framework within the Standard Model of elec-
troweak interactions for inclusive and exclusive radiative B-decays dominated by the elec-
tromagnetic penguins. The inclusive decays are grouped as B → Xf + γ, where we use
the flavour of the light quark f = s, d in the transition b→ f to characterize the hadronic
system recoiling against the photon. Including lowest-order QCD corrections and gluon
bremsstrahlung, these decays are described at the parton level by the transitions b→ fγ
and b→ fγg. In calculating the inclusive decay widths, we shall follow the work reported
in [3, 4, 11]. The exclusive decays that are the principal concern of this work are grouped
in an analogous way into b→ s transitions:

• Bu → K∗ + γ, Bd → K∗ + γ,

• Bs → φ+ γ,

which we shall also term CKM-allowed, according to the dominant CKM matrix element
dependence of their decay rates, and b→ d transitions:

• Bd → ρ+ γ, Bd → ω + γ, Bu → ρ+ γ,

• Bs → K∗ + γ,

which will be called CKM-suppressed.
The framework to incorporate (perturbative) short-distance QCD corrections in a

systematic way is that of an effective low energy theory with five quarks. It is obtained



by integrating out the heavier degrees of freedom, i.e. the top quark and W± bosons.
Since the running of αs between mt (present estimates mt = 164± 27 GeV [26]) and mW

is not very significant, and since mW/mt would not be a good expansion parameter, it is
a reasonable approximation to integrate out both the top quark and the W± at the same
scale.

Before using the unitarity properties of the CKM matrix, the effective Hamiltonian
relevant for the processes b→ fγ and b→ fγg has the form

H
(b→f)
eff = −4GF√

2



VtbV
∗
tf

8∑

j=3

Cj(µ)Oj(µ)

+ VcbV
∗
cf

8∑

j=1

C ′
j(µ)O′

j(µ) + VubV
∗
uf

8∑

j=1

C ′′
j (µ)O′′

j (µ)



 , (2)

where GF is the Fermi coupling constant and j runs through a complete set of operators
with dimension up to six; the Cj(µ) are their Wilson coefficients evaluated at the scale µ.

We recall here that O
′(′)
1 and O

′(′)
2 represent the colour-singlet and colour-octet four-

fermion operators, respectively, obtained from the SM charged current Lagrangian written
in the charge retention form; in particular,

O′
2 = (c̄Lαγ

µbLα)(f̄LβγµcLβ) and O′′
2 = (ūLαγ

µbLα)(f̄LβγµuLβ) , (3)

where α and β are SU(3) colour indices. The remaining operators are the same for all
three CKM prefactors, i.e. O′

j = O′′
j = Oj for j 6= 1, 2. At tree level, the only contribution

to b→ fγ comes from the magnetic moment operator

O7 =
e

16π2
f̄ σµν (mbR +mfL) b Fµν , (4)

where L,R = (1∓γ5)/2, and e is the QED coupling constant. The four-fermion operators
O3, ..., O6 and the QCD magnetic moment operator O8, which is the gluonic counterpart
of O7, arise from penguin diagrams in the full theory (before integrating out W and t).
These operators enter indirectly in b → fγ decays due to operator mixing and through
(virtual and bremsstrahlung) gluon corrections.

Taking into account the unitarity of the CKM matrix, only two terms in the combi-
nations λi ≡ VibV

⋆
is — or in the combinations ξi ≡ VibV

⋆
id in the case of CKM-suppressed

transitions — are independent. For b→ s transitions, one finds |λu| ≪ |λc|, |λt|; therefore,
when neglecting terms proportional to λu, the effective Hamiltonian (2) can be brought
into a form proportional to λt ≈ −λc:

H
(b→s)
eff = −4GF√

2
λt

8∑

j=1

Cj(µ)Oj(µ) . (5)

For b → d transitions, where ξu, ξc and ξt are all of the same order of magnitude, it
is most convenient to choose ξu and ξc as independent CKM factors during the matching
for the Wilson coefficients at µ = mW and during the renormalization group evolution to
µ ≈ mb. Since terms of order O(m2

u/m
2
W ) and O(m2

c/m
2
W ) (or O(m2

u/m
2
t ) and O(m2

c/m
2
t ))



are thereby neglected, the terms proportional to ξu and ξc are multiplied by just the same
coefficient functions, i.e. C ′

j(µ) = C ′′
j (µ) (although the corresponding operators are, of

course, different, see (3)). Finally, exploiting again ξu + ξc = −ξt, one ends up with

H
(b→d)
eff = −4GF√

2



ξt
8∑

j=3

Cj(µ)Oj(µ) −
2∑

j=1

Cj(µ)
{
ξcO

′
j(µ) + ξuO

′′
j (µ)

}


 , (6)

where the Wilson coefficients Cj(µ) are precisely the same functions as in (5). Details of
the full operator basis, the matching of the Wilson coefficients Cj at µ ≈ mW , and the
complete leading-logarithmic renormalization group evolution to µ ≪ mW can be found
in the literature [28].

In estimates of the inclusive branching ratio for BR(B → Xs + γ) one has to include
the contribution of the QCD bremsstrahlung process b → s + γ + g and the virtual
corrections to b → s + γ, both calculated in O(ααs) in ref. [11]. Expressed in terms of
the inclusive semileptonic branching ratio BR(B → Xℓνℓ), one finds:

BR(B → Xs + γ) = 6
α

π

|λt|2
|Vcb|2

|C7(xt, mb)|2K(xt, mb)

g(mc/mb)(1 − 2/3αs

π
f(mc/mb))

× BR(B → Xℓνℓ) , (7)

where xt = m2
t/m

2
W indicates the explicit mt-dependence in C7(xt, mb) ≡ C7(mb), and

g(r) = 1− 8r2 + 8r6 − r8 − 24r4 ln(r) is the phase-space function for Γ(b→ c+ ℓνℓ). The
function f(r) accounts for QCD corrections to the semileptonic decay and can be found,
for example, in ref. [32]. It is a slowly varying function of r, and for a typical quark mass
ratio of r = 0.35 ± 0.05, it has the value f(r) = 2.37 ∓ 0.13. The contributions from
the decays b → u + ℓ νℓ have been neglected in the denominator in (7) since they are
numerically inessential (|Vub| ≪ |Vcb|). For the semileptonic branching ratio, the measured
value BR(B → Xℓνℓ) ≃ 11% will be used.

The inclusive decay width for B → Xs + γ is dominantly contributed by the magnetic
moment term C7(xt, µ)O7(µ), hence the rationale of factoring out this coefficient in the
expression for BR(B → Xs + γ) in Eq. (7) above. Including O(αs) corrections brings
to the fore other operators with their specific Wilson coefficients. The effect of these
additional terms can be expressed in terms of the function K(xt, mb), which is a K-factor
in the sense of QCD corrections. The function K(xt, mb) has been computed in [3] taking
into account the dominant corrections from C2 and C8 (the coefficients of other operators
are considerably smaller [28]). The resulting branching ratio is‡ [3]:

BR(B → Xs + γ) = (3.0 ± 0.5) × 10−4 (8)

for mt in the range 100 GeV ≤ mt ≤ 200 GeV. This is to be contrasted with the present
upper limit on the exclusive radiative decay, BR(B → Xs +γ) < 5.4×10−4 (at 90% C.L.)
[2].

It has been argued in ref. [3] that the scale dependence of C7(xt, µ) is very pronounced
in the presently available leading-logarithmic approximation. This inherent uncertainty
of the present theoretical framework has to be borne in mind in a quantitative discussion

‡obtained by setting the CKM matrix element ratio |λt|2/|Vcb|2 to 1, according to our present knowl-
edge of the CKM matrix (readily seen, e.g., in the Wolfenstein representation [27]).



of the QCD-improved decay rates. In ref. [3] this uncertainty has been estimated by
varying the scale parameter µ in the range mb/2 ≤ µ ≤ 2mb and introduces an additional
theoretical error of ±1 × 10−4 in the above estimates for BR(B → Xs + γ).

The case of inclusive B → Xd + γ decays is somewhat more complicated with respect
to the factorization of the CKM parameters. When evaluating the one-loop matrix ele-
ments for the parton process b → sγg, at least the four-quark operators O′

2 and O′′
2 should

be kept since their coefficients are of order unity (they contribute in penguin diagrams
emitting both a gluon and a photon). These contributions involve a non-trivial depen-
dence on the CKM matrix elements through terms proportional to ξu and ξc, see eq. (6).
Explicit expressions for this dependence on the ρ and η parameters in the Wolfenstein
representation of the CKM matrix have been evaluated in ref. [4].

In the following we shall focus our attention on exclusive decays, like Bu,d → K∗ + γ
and Bs → φ + γ, and the corresponding CKM-suppressed modes listed at the beginning
of this section. At tree level only the magnetic moment operator O7 of eq. (4) contributes
to the transition amplitudes. For a generic radiative decay B → V + γ one defines a
transition form factor F1(q

2) as:

〈V, λ|f̄σµνq
νb|B〉 = iǫµνρσe

∗(λ)νpρ
Bp

σ
V 2FB→V

1 (q2) , (9)

where V is a vector meson (V = ρ, ω,K∗ or φ) with the polarization vector e(λ); and
B is the generic B-meson Bu, Bd or Bs. The vectors pB, pV and q = pB − pV denote
the four-momenta of the initial B-meson and the outgoing vector meson and photon,
respectively.

In (9) it is understood that the operator is evaluated at the scale µ = mb, and all large
logarithms, ln(mW/mb) and ln(mt/mb), are included in the coefficient function C7(µ =
mb). The b-quark mass, which has been factored out, should be identified with the pole
mass, although the complete two-loop treatment of the coefficient function is needed to
make this identification meaningful.

In evaluating the hadronic matrix elements, one may consider the b-quark mass as
a large parameter, and try to collect logarithms, corresponding to the so-called hybrid
anomalous dimension [35]. At zero-recoil, q2

max = (mB −mV )2 ≃ 19 GeV2, this treatment
is simple and the answer is obtained in the framework of the heavy quark effective theory.
However, in this case the extrapolation to the physical point q2 = 0 introduces a large
uncertainty. We take a different approach, and use the QCD sum rules to calculate the
form factors directly at the physical point q2 = 0 and for the finite value of the b-quark
mass. The price to pay is that the treatment of hybrid logarithms becomes complicated,
and we shall ignore them in this paper.

With the above definition, the exclusive decay widths are given by (B = Bu or Bd):

Γ(B → K⋆ + γ) =
α

32π4
G2

F |λt|2|FB→K∗

1 (0)|2C7(xt, mb)
2(m2

b +m2
s)

(m2
B −m2

K∗)3

m3
B

, (10)

and the analogous expression for Γ(Bs → φ+ γ). The branching ratios of these exclusive
decays can again be written in terms of the inclusive semileptonic branching ratio:

BR(B → K⋆ + γ) = 6
α

π

|λt|2
|Vcb|2

|C7(xt, mb)|2|FB→K∗

1 (0)|2
g(mc/mb)(1 − 2/3αs

π
f(mc/mb))

(1 −mK∗
2/m2

B)3

(1 −m2
s/m

2
b)

3
× (11%).

(11)



A good quantity to test the model dependence of the form factors for the exclusive
decay is the ratio of the exclusive-to-inclusive radiative decay widths (B = Bu or Bd):

R(K∗/Xs) ≡
Γ(B → K∗ + γ)

Γ(B → Xs + γ)
=

(1 −mK∗
2/m2

B)3

(1 −m2
s/m

2
b)

3

m3
B

m3
b

|FBi→K∗

1 (0)|2
K(xt, mb)

. (12)

Note that K(xt, mb) ≃ 0.83 is almost independent of mt (for the range 100 GeV ≤
mt ≤ 200 GeV) [3]. The exclusive-to-inclusive ratio involving Bs-decays is defined in an
analogous way.

Since the same short-distance-corrected coefficient function C7(mb) enters in the Hamil-
tonian for CKM-allowed (5) and CKM-suppressed (6) modes, the QCD scaling is identical
for the two-body decays b→ s+ γ and b → d+ γ, and it does not affect the ratio of the
decay widths Γ(b→ d+ γ)/Γ(b→ s+ γ). The same applies for the exclusive decays such
as B → ρ + γ and B → K∗ + γ, in which case the CKM factors factorize in the decay
amplitudes.

From this observation a number of relations between the exclusive decay rates follow
in the Standard Model [4]. This is exemplified by the decay rates for Bu,d → ρ + γ and
Bu,d → K∗ + γ:

Γ(Bu,d → ρ+ γ)

Γ(Bu,d → K∗ + γ)
=

|Vtd|2
|Vts|2

|FB→ρ
1 (0)|2

|FB→K∗

1 (0)|2Φu,d , (13)

where Φu,d is a phase-space factor:

Φu,d =
(m2

b +m2
d)

(m2
b +m2

s)

(m2
Bu,d

−m2
ρ)

3

(m2
Bu,d

−m2
K∗)3

. (14)

The ratio (13) depends only on the CKM matrix elements and the ratio of form factors,
while it is independent of the top quark mass (and of the renormalization scale µ).

Note that the decay width Γ(Bd → ω + γ) is expected to be equal to the decay width
Γ(Bd → ρ+γ), apart from the minor difference in the phase-space factors Φ. This follows
from the assumption that the quark wave functions for ω and ρ are described by the
isoscalar and isovector combinations, |ω〉 = 1/

√
2(ūu + d̄d) and |ρ〉 = 1/

√
2(ūu − d̄d),

respectively.
The CKM-suppressed exclusive decay width Γ(Bs → K∗ + γ) can be related to the

CKM-allowed decay width Γ(Bd → K∗ + γ) by a relation similar to the one given in
eq. (13). However, one expects a substantial difference in the form factors FBd→K∗

1 (0) and
FBs→K∗

1 (0) due to the exchange of the roles of s and d quarks in the wave function of the
K∗ in the two decay modes.

3 QCD sum rules on the light cone

The aim of this and the following two sections is to calculate transition form factors,
governing the radiative B-decays B → V + γ, as defined in (9). Our approach is very
close to the calculation of the semileptonic B → πeν form factor in [19, 24].

To derive the sum rule, we consider the correlation function

i
∫
dx eiqx〈V (p, λ)|T{ψ̄(x)σµνq

νb(x)b̄(0)iγ5ψ(0)}|0〉 = iǫµνρσe
∗(λ)νqρpσT ((p+ q)2) (15)



at q2 = 0, p2 = m2
V , and at Euclidean m2

b−(p+q)2 of order several GeV2. Hereafter we use
ψ as a generic notation for the field of the light quark. Writing down the dispersion relation
in (p + q)2, we can separate the contribution of the B-meson as the pole contribution to
the invariant function T ((p+ q)2):

T ((p+ q)2) =
fBm

2
B

mb +mq

2F1(0)

m2
B − (p+ q)2

+ . . . , (16)

where the dots stand for contributions of higher-mass resonances and the continuum. The
B-meson decay constant is defined in the usual way,

〈0|ψ̄γµγ5b|B(p)〉 = ipµfB , (17)

and mB, mb and mq are the B-meson, b-quark and light-quark masses, respectively.
The virtuality of the heavy quark in the correlation function under consideration is

large, of order m2
b − (p+q)2, and one can use the perturbative expansion of its propagator

in the external field of slowly varying fluctuations inside the vector meson. The leading
contribution corresponds to the diagram shown in Fig. 1a, and equals

∫
dx eiqx

∫
dk

(2π)4
e−ikx qν

m2
b − k2

〈V (p, λ)|T{ψ̄(x)σµν(mb+ 6k)iγ5ψ(0)}|0〉. (18)

To the leading-twist accuracy, taking into account gluon corrections like the one in Fig. 1b
produces the path-ordered gauge factor in between the remaining quark fields in (18),
which we do not show for brevity.

Thus, in general we are left with matrix elements of gauge-invariant non-local oper-
ators, sandwiched in between the vacuum and the meson state. These matrix elements
define the light-cone meson wave functions, which have received a lot of attention in the
past decade. Following Chernyak and Zhitnitsky [36], we define

〈0|ψ̄(0)σµνψ(x)|V (p, λ)〉 = i(e(λ)
µ pν − e(λ)

ν pµ)f⊥
V

∫ 1

0
du e−iupxφ⊥(u, µ2). (19)

Likewise,

〈0|ψ̄(0)γµψ(x)|V (p, λ)〉 = pµ
(e(λ)x)

(px)
fVmV

∫ 1

0
du e−iupxφ‖(u, µ

2)

+

(

e(λ)
µ − pµ

(e(λ)x)

(px)

)

fVmV

∫ 1

0
du e−iupxg

(v)
⊥ (u, µ2),(20)

〈0|ψ̄(0)γµγ5ψ(x)|V (p, λ)〉 = −1

4
ǫµνρσe

(λ)νpρxσfVmV

∫ 1

0
du e−iupxg

(a)
⊥ (u, µ2). (21)

The functions φ⊥(u, µ2) and φ‖(u, µ
2) give the leading-twist distributions in the fraction of

total momentum carried by the quark in transversely and longitudinally polarized mesons,
respectively. The functions g

(v)
⊥ (u, µ2) and g

(a)
⊥ (u, µ2) are discussed in detail below. The

normalization is chosen in such a way that for all four distributions f = φ⊥, φ‖, g
(v)
⊥ , g

(a)
⊥ ,

we have: ∫ 1

0
du f(u) = 1.



In the matrix elements of non-local operators on the l.h.s. of (19)–(21) the separations
are assumed to be light-like, i.e. x2 = 0. Regularization of UV divergences that arise
in the process of the extraction of the leading x2 → 0 behaviour produces a non-trivial
scale dependence of the wave functions, which can be found by renormalization group
methods [20, 21]. The scale in (18) is fixed by the actual light cone separation, µ2 ∼
x−2 ∼ m2

b − (p+ q)2.
Putting eqs. (18)–(21) together, we obtain

T ((p+ q)2) =
∫ 1

0
du

1

m2
b + ūum2

V − u(p+ q)2

[

mbf
⊥
V φ⊥(u) + umV fV g

(v)
⊥ (u)

+
1

4
mV fV g

(a)
⊥

]

+
1

4

∫ 1

0
du

m2
b − u2m2

V

(m2
b + ūum2

V − u(p+ q)2)2
mV fV g

(a)
⊥ (u) .

(22)

where ū = 1− u. The expression in (22) has the form of a dispersion integral in (p+ q)2,
which can be made explicit by introducing the squared mass of the intermediate state
s = m2

b/u + ūm2
V as the integration variable, instead of the Feynman parameter u. The

basic assumption of the QCD sum rule approach is that the contribution of the B-meson
corresponds in this dispersion integral to the contribution of intermediate states with
masses smaller than a certain threshold s < s0 (duality interval). Making the Borel
transformation 1/(s − (p + q)2) → exp(−s/t) and equating the result to the B-meson
contribution in (16), we arrive at the sum rule

fBm
2
B

mb +mq

2F1(0)e−(m2

B
−m2

b
)/t =

=
∫ 1

0
du

1

u
exp

[

− ū
t

(
m2

b

u
+m2

V

)]

θ

[

s0 −
m2

b

u
− ūm2

V

]{

mbf
⊥
V φ⊥(u, µ2 = t)

+ umV fV g
(v)
⊥ (u, µ2 = t) +

m2
b − u2m2

V + ut

4ut
mV fV g

(a)
⊥ (u, µ2 = t)

}

, (23)

which should be satisfied for values of the Borel parameter t of order several GeV2. To
the leading logarithmic accuracy, the scale in the wave functions coincides with the Borel
parameter. Principal input in this sum rule are the vector meson wave functions, which
contain non-trivial information about the dynamics at large distances, and which we are
going to discuss now.

4 Wave functions of the vector mesons

It is known that the decomposition of the leading-twist meson wave functions in terms
of conformal invariant operators allows one to diagonalize the mixing matrix at one-loop
order. Thus, the (approximate) conformal invariance of QCD implies that the coefficients
in the expansion of leading-twist wave functions in the series of Gegenbauer polynomials
[37] are renormalized multiplicatively to the leading logarithmic accuracy. In our case

φ⊥(u, µ) = 6u(1 − u)
[
1 + a1(µ)ξ + a2(µ)

(
ξ2 − 1

5

)
+ a3(µ)

(
7

3
ξ3 − ξ

)
+ . . .

]
,



an(µ) = an(µ0)

(
αs(µ)

αs(µ0)

)γn/b

, (24)

where we have introduced the shorthand notation ξ = 2u−1. Here b = (11/3)Nc−(2/3)nf .
The anomalous dimensions turn out to be [38]

γn = CF

(

1 + 4
n+1∑

j=2

1/j

)

, (25)

where CF = (N2
c − 1)/(2Nc). The coefficients in the Gegenbauer expansion (24) at a

low scale, an(µ0), should be determined by a certain non-perturbative approach, or taken
from experiment. At present, most of the existing information comes from the QCD sum
rules. Following [36], we use the model wave functions for ρ, K∗ and φ mesons at the
scale µ2

0 = 1 GeV2, corresponding to the following choice of the parameters in (24):

a
(ρ)
2 = −1.25,

a
(K∗)
1 = 0.75, a

(K∗)
2 = −2, a

(K∗)
3 = 0.75,

a
(φ)
2 = −2.5. (26)

Note that in the case of ρ and φ mesons only a2 is non-zero, and the wave function is
symmetric under the interchange u↔ 1−u. In the case of a K∗-meson, it is necessary to
specify that the variable u is the fraction of the total momentum carried by the strange
quark. The decay constants appearing in (19) are [36]:

f⊥
ρ = 200 MeV ,

f⊥
K∗ = 210 MeV ,

f⊥
φ = 230 MeV . (27)

As mentioned above, the correct normalization point in the sum rules is of the order of
the typical Borel parameter, which for B-meson decays is of order µ2 ∼ m2

B − m2
b ∼ 5

GeV2. Using ΛMS = 225 MeV in the renormalization group rescaling factors given in
(24), we obtain at this scale

a
(ρ)
2 = −0.85,

a
(K∗)
1 = 0.57, a

(K∗)
2 = −1.35, a

(K∗)
3 = 0.46,

a
(φ)
2 = −1.7. (28)

The wave functions corresponding to the above parametrization are shown in Fig. 2. As
a general effect of the rescaling, the wave functions become somewhat wider and closer
to the asymptotic expression 6u(1 − u). In the case of the K∗-meson, the wave function
becomes both wider and more symmetric, so that scaling violation affects the region
u < 1/2 only ( see Fig. 2b). The integration over u in the sum rule in (23) is restricted
to the interval of rather large momentum fractions, carried by the light quark involved
in the electromagnetic penguin operator. For realistic values of parameters, see below,
one has u > 0.65–0.7. According to the analysis in [36], the K∗ wave function turns out



to be in this region very close to the asymptotic expression 6u(1 − u). In the case of
the decay Bs → K∗γ, the role of the strange and non-strange quarks in the K∗-meson
is reversed, corresponding to the formal substitution u → 1 − u in the wave function.
Thus, the region of small values u < 0.3 − 0.35 in Fig. 2b becomes appropriate, where
deviations from the asymptotic form are large and the effect of rescaling is important.
This results in a significant difference between the form factors in the decays Bd → K∗+γ
and Bs → K∗ + γ.

The conformal expansion of the wave functions g
(v)
⊥ (u, µ2) and g

(a)
⊥ (u, µ2) is somewhat

more involved and can be obtained using the approach of [39]. To this end we define new
wave functions, which contain quarks with fixed spin projections on the light cone:

〈0|ψ̄(0) 6xγµ 6pψ(x)|V (p, λ)〉 = −eλ
µmV fV (px)

∫ 1

0
du e−ipxug↑↓(u, µ2),

〈0|ψ̄(0) 6pγµ 6xψ(x)|V (p, λ)〉 = −eλ
µmV fV (px)

∫ 1

0
du e−ipxug↓↑(u, µ2). (29)

The wave functions g↑↓(u) and g↓↑(u) can be expanded in terms of irreducible representa-
tions of the collinear conformal group as [40, 41, 39]:

g↑↓(u) = 2(1 − u)
[
1 + c↑↓1 P

(1,0)
1 (ξ) + c↑↓2 P

(1,0)
2 (ξ) + . . .

]
,

g↓↑(u) = 2u
[
1 + c↓↑1 P

(0,1)
1 (ξ) + c↓↑2 P

(0,1)
2 (ξ) + . . .

]
, (30)

where P
(l,m)
k (ξ) are Jacobi polynomials [37]. The normalization in (29) follows from the

standard definition of vector decay constants

〈0|ψ̄γµψ|V (p, λ)〉 = eλ
µmV fV . (31)

The numerical values determined from QCD sum rules are [16, 36]

fρ = 200 MeV ,

fK∗ = 210 MeV ,

fφ = 230 MeV . (32)

Note that these couplings, to the accuracy of the existing QCD sum rule calculations,
coincide with the couplings in (27).

Neglecting SU(3)-breaking effects related to the difference of the quark and antiquark
masses in the mesons, one has

c↑↓k = (−1)kc↓↑k ≡ ck. (33)

Finally, the coefficient c1 is actually fixed by the equations of motion, which allow one to
reduce the matrix element

〈0|ψ̄γµγ5(i
↔

Dν)ψ|V (p, λ)〉 = iAǫµνρσe
ρpσ (34)

to the matrix element in (31). Thus, we find A = −(1/2)fVmV [42] and

c1 = −1/2 . (35)



On the other hand, one has the obvious relations:

g
(v)
⊥ (u) =

1

2
[g↑↓(u) + g↑↓(u)] ,

d

du
g

(a)
⊥ (u) = 2[g↑↓(u) − g↑↓(u)] . (36)

Using the identities [37]

(1 + ξ)P
(0,1)
k (ξ) + (1 − ξ)P

(1,0)
k (ξ) = 2C

1/2
k (ξ) ,

(1 + ξ)P
(0,1)
k (ξ) − (1 − ξ)P

(1,0)
k (ξ) = 2C

1/2
(k+1)(ξ) ,

d

dξ
(1 − ξ2)C

3/2
k (ξ) = −(k + 1)(k + 2)C

1/2
k+1(ξ) , (37)

where Cλ
k (ξ) are Gegenbauer polynomials, we arrive at the expansions:

g
(v)
⊥ (u) =

∑

k=2n

(ck − ck−1)C
1/2
k (ξ) ,

g
(a)
⊥ (u) = 2(1 − ξ2)

∑

k=2n

ck − ck+1

(k + 1)(k + 2)
C

3/2
k (ξ) . (38)

The coefficients in front of each Gegenbauer polynomial come from the operators with
two neighbouring conformal spins. According to a general result [40], the operators with
different conformal spin do not mix under renormalization to leading logarithmic accuracy.
This is a major simplification but does not guarantee multiplicative renormalization in the
present case because of the existence of three-particle antiquark–quark–gluon operators
with the same twist and conformal spin (see [39]).

Further insight in the structure of the wave functions g
(v)
⊥ (u) and g

(a)
⊥ (u) can be ob-

tained by using the equations of motion. Note that both these wave functions correspond
to transverse spin distributions, and involve precisely the same operators (apart from a

missing γ5 in the case of g
(v)
⊥ (u)) as the ones involved in the operator product expansion

for the structure function g2(x,Q
2) of polarized deep inelastic lepton–nucleon scattering.

The difference is indeed in the matrix elements – which involve the (polarized) nucleons
with equal momenta in the latter case and the vacuum and the vector meson state in
the present situation. Thus, similar to the case of the structure function g2, the wave
functions g

(v)
⊥ (u) and g

(a)
⊥ (u) contain contributions coming from both operators of twist

2 and twist 3. In close analogy to deep inelastic scattering, the twist-2 contributions to
the “transverse” wave functions g

(v)
⊥ , g

(a)
⊥ can be expressed in terms of the leading-twist

“longitudinal” wave function φ‖(u, µ
2) defined in (21):

g
(v),twist−2
⊥ (u) =

1

2

[∫ u

0
dv
φ‖(v)

v̄
+
∫ 1

u
dv
φ‖(v)

v

]

d

du
g

(a),twist−2
⊥ (u) = 2

[

−
∫ u

0
dv
φ‖(v)

v̄
+
∫ 1

u
dv
φ‖(v)

v

]

(39)

which is the analogue of the Wandzura-Wilczek relations [43] between the structure func-

tions g2 and g1. The remaining twist-3 contributions to g
(v)
⊥ , g

(a)
⊥ can be written in terms



of three-particle antiquark–gluon–quark wave functions of transversely polarized vector
mesons, considered in [42, 36]. The derivation of (39) and the relations for twist-3 con-
tributions will be given elsewhere.

In this paper, we do not take into account contributions of twist 3 which come from
the gluon-exchange diagram in Fig. 1b, and to this accuracy we need to keep the twist-2
contributions to the wave functions g

(v)
⊥ , g

(a)
⊥ only. In anology with a similar situation in

the case of the structure function g2, one should expect that corrections to the asymptotic
wave function φ‖(u) = 6u(1−u), coming from twist-2 operators involving gluons [36] are of
the same order of magnitude as neglected contributions of twist 3. Thus, for consistency,
we must neglect the gluon corrections to g

(v)
⊥ , g

(a)
⊥ altogether, which amounts to putting

to zero all the coefficients in (30) except the first two, c0 = 1 and c1 = −1/2. Thus, we
obtain, finally

g
(v)
⊥ (u) = 1 +

1

2
C

1/2
2 (ξ) =

3

4
(1 + ξ2) ,

g
(a)
⊥ (u) =

3

2
(1 − ξ2) = 6u(1 − u) , (40)

which we use in the numerical analysis. It is easy to check that these expressions are
exactly the ones that follow from (39) with the asymptotic expression for the longitudinal
distribution amplitude φ‖(u) = 6u(1 − u). The same expressions for the transverse wave
functions in (40) have been found in [42] by a different method. The identification of
these contributions as being of twist 3 in ref. [42] is, however, an error.

5 Evaluation of the sum rules

To complete the list of entries which appear in the sum rule (23) we must specify the value
of the pole b-quark mass mb and the continuum threshold s0. We vary these parameters
in the limits

mb = 4.6–4.8 GeV ,

s
(B)
0 = 33–35 GeV2 , (41)

and for the continuum threshold in the Bs-channel, we take

sBs

0 − sB
0 = m2

Bs
−m2

B ≃ 1 GeV2, (42)

making use of the present world average mBs
= 5373.2 ± 4.2 MeV [44, 45, 46].

The value of the B-meson decay constant fB has received a lot of attention recently.
Within the QCD sum rule approach, its value is strongly correlated with the values of
the b-quark mass and the continuum threshold (see [47] and references cited therein). For
consistency, we substitute the value of fB in (23) by the square root of the corresponding
QCD sum rule:

f 2
Bm

4
B

m2
b

e−(m2

B
−m2

b
)/t

=
3

8π2

∫ s0

m2

b

sds e−(s−m2

b
)/t(1 −m2

b/s)
2 −mb〈q̄q〉µ2=t −mb〈q̄σgGq〉µ2=t

1

2t

(

1 − m2
b

2t

)

,

(43)



in which we discarded the radiative O(αs) corrections, as they are not taken into account
in the sum rule (23) either, and we also neglected numerically insignificant contributions of
the four-quark operators and of the gluon condensate.§ The sum rule in (43) is evaluated
at precisely the same values of mb and s0 as in (23), and using the standard values of the
vacuum condensates 〈q̄q〉 = −(240 MeV)3 and 〈q̄σgGq〉/〈q̄q〉 = 0.8 GeV2 (at the low scale
µ2

0 = 1 GeV2), which have been used in the QCD sum rule analysis of the wave functions
in [36]. The renormalization group evolution is given by

〈q̄q〉µ2 =

(
αs(µ)

αs(µ0)

)−4/b

〈q̄q〉µ2

0

,

〈q̄σgGq〉µ2 =

(
αs(µ)

αs(µ0)

)2/(3b)

〈q̄σgGq〉µ2

0

. (44)

For the decay constant of the Bs-meson, we use the sum rule in (43), and the ratio

fBs
/fBd

= 1.15 ± 0.05, (45)

which is in agreement with most existing estimates [8, 51].
The stability plots for the form factors as functions of the Borel parameter are shown

in Fig. 3. The stability is in all cases good, and the variations of the continuum threshold
within the limits (41) induce uncertainties in the values of form factors within less than
3%. Using the region in the Borel parameter 6 GeV2 < t < 9 GeV2, we extract the values
of form factors

FB→K∗

1 = 0.32 ± 0.05

F
B→(ρ,ω)
1 = 0.24 ± 0.04

FBs→φ
1 = 0.29 ± 0.05

FBs→K∗

1 = 0.20 ± 0.04 (46)

The given error mainly comes from the uncertainty in the b-quark mass and the depen-
dence on the Borel parameter. In addition, we have included an uncertainty of 20% for
the parameters (26) of the wave functions. This leads for all decays to an error of order
±(0.01–0.015) for F1. For all decays except Bs → K∗γ, the sum rule is dominated by the
contribution of the wave function φ⊥, and the average value of the momentum fraction u
under the integral in (23) is 〈u〉 ≃ 0.8.

The uncertainties in the values of input parameters tend to be reduced in the form
factor ratios, see Fig. 4, and we obtain

F
B→(ρ,ω)
1

FB→K∗

1

= 0.76 ± 0.06. (47)

§ The sum rule in (43) yields fB ∼ 120–160 MeV, which is lower than the value preferred at present,
typically fB ∼ 180 MeV (see [47] for a review). This smaller value is an artefact of neglecting the radiative
corrections, which are numerically large. One can hope that these corrections will be reduced significantly
by taking the ratio of the sum rules. By direct calculations in the limit mb → ∞, it has been shown on
examples of increasing complexity (the Isgur-Wise function [48, 49] and the kinetic energy operator [50])
that radiative corrections are indeed very strongly reduced by considering the sum rule ratios, and we
conform to this practice here.



which is not sensitive to the value of the B-meson decay constant. Similarly, we have

FBs→K∗

1

FBs→φ
1

= 0.66 ± 0.09 (48)

and
FBs→K∗

1

FB→K∗

1

= 0.60 ± 0.12. (49)

The errors given for these ratios are dominated by uncertainties in the SU(3)-breaking
in the wave functions, while the quark-mass dependence is greatly reduced. The small
value of the last ratio is due to the asymmetry of the K∗ wave function – the strange
quark carries a larger fraction of the meson momentum (see Fig. 2). It should be noted
that errors given here reflect uncertainties in the input parameters, but do not include a
possible “theoretical” uncertainty of the method itself. We estimate the actual accuracy
of the calculation to be within 20–30% for the form factors and 10–20% for their ratios. To
improve the accuracy, it is necessary to calculate corrections to the sum rule (23) coming
from antiquark–gluon–quark components of the vector meson wave functions, SU(3)-

breaking corrections to the wave functions g
(a,v)
⊥ , and the perturbative QCD radiative

corrections.

6 The b-quark mass dependence and

the heavy quark limit

In order to facilitate the comparison of the QCD sum rule results with lattice calculations
[9, 10], we have done the numerical analysis of the sum rules (23) for an arbitrary value of
the b-quark mass, assuming the following parametrization suggested by the heavy quark
effective theory [52]:

mB = mb + Λ̄ , Λ̄ ≃ 500–700 MeV ,

sB
0 −m2

b = 2mbω0 , ω0 ≃ 1.0–1.2 GeV ,

t = 2mbτ , τ = 0.5–0.8 GeV . (50)

Here Λ̄ is the binding energy in the limit mb → ∞, and ω0 is the continuum threshold.
The variable τ has the meaning of the non-relativistic Borel parameter [53]–[57].

The results are shown in Fig. 5, where for the reason which is explained below we
have plotted the value of the form factor multiplied by the meson mass to the power
3/2. In addition to the curves describing the quark-mass dependence in the heavy-quark
parametrization (50), we also show our result for FB→K∗

1 given in (46). Furthermore,
using the mass of the D-meson, instead of mB, and the standard values of the parameters
for D-mesons, sD

0 = 6 GeV2, mc = 1.4 ± 0.05 GeV, and t = 1.5–3 GeV2 [25], we obtain

FD→K∗

1 = 0.85 ± 0.13 . (51)

Although the number given in (51) is not directly physically relevant, it can facilitate the
comparison with the present lattice data, which are collected mostly in the D-meson mass
range.



The curves in Fig. 5 disagree slightly with our values for the form factors for B and
D-mesons. For B-mesons, the reason is that in (41) we use a rather generous uncertainty
in the b-quark mass. For D mesons, the omitted O(1/m) corrections to the parameters
given in (50) can already become significant.

Comparing the values given in (46) and (51), we conclude that in the region between
the charm and beauty masses the form factor scales approximately as F1 ∼ 1/mB. How-
ever, this power behaviour holds only for the sum rule results in the constrained interval of
quark masses, and should not be confused with the theoretical behaviour in the mb → ∞
limit, which we are going to discuss now.

In the heavy b-quark limit the sum rule in (23) involves the integration over a small
interval of u, of order 1 − u ∼ 1/mb. This condition has a simple interpretation: the
spectator antiquark must recombine with the fast quark coming from the b-decay. There-
fore, the form factor is determined by the “tail” of the vector meson wave function cor-
responding to a strongly asymmetric configuration where almost all the momentum is
carried by one of the constituents. It has been proven [20, 21] that the behaviour of
the wave functions in this region at sufficiently large virtualities must coincide with the
perturbative behaviour, which can be obtained from the conformal properties of the cor-
responding operators. Quite rigorously, one obtains for the wave functions involved in
(23): φ⊥(u) ∼ φ‖(u) ∼ g

(a)
⊥ ∼ O(1 − u), and g

(v)
⊥ ∼ O(1) for 1 − u → 0 (see (24) and

(38)). It is easy to check that this behaviour is exactly the one needed to ensure that the
three terms in (23) are of the same order in the limit mb → ∞, yielding the form factor

F1(0) ∼ O(m
−3/2
b ). The diagram with the hard gluon exchange produces the same power

behaviour [19, 13], and is estimated to be small [13]. The large factors ∼ mb in front

of the wave functions φ⊥ and g
(a)
⊥ in (23) are compensated by the smallness of the wave

functions ∼ 1/mb in the relevant region 1 − u ∼ 1/mb.
In order to establish a connection to the heavy-quark expansion of the two-point sum

rules [53]–[57], we introduce the scale-invariant (up to logarithms) form factor and B-
decay constant

F̂1(0) = F1(0) ·m3/2
B ,

f̂B = fB · √mB , (52)

and rewrite the sum rule (23) in terms of the non-relativistic Borel parameter τ = t/(2mb).
The result reads as:

f̂BF̂1(0)e−Λ̄/τ = fV

∫ ω0

0
dω e−ω/τ

{
−2ωφ′

⊥(1) +mV g
(v)
⊥ (1) − ω

4τ
mV (g

(a)
⊥ )′(1)

}
, (53)

where the new parameters Λ̄ and ω0 are defined in (50). The variable ω = mbū/2 has the
meaning of frequency, and is defined as (p + q)2 − m2

b = 2mbω (see eq. (22)). For the
wave functions, we obtain, to our accuracy:

− φ′
⊥(1) ≡ − d

du
φ⊥(1) = 6[1 + a1(µ) + (4/5)a2(µ) + (4/3)a3(µ)] ,

g
(v)
⊥ (1) = 3/2 ,

−(g
(a)
⊥ )′(1) = 6 , (54)



where µ ≃ 2τ [57]. In the same limit, the sum rule for the B-decay constant becomes
[53]–[57]:

f̂ 2
Be

−Λ̄/τ =
3

π2

∫ ω0

0
dω e−ω/τω2 − 〈q̄q〉µ=2τ +

1

16τ 2
〈q̄σgGq〉µ=2τ . (55)

Using the sum rule in (55) to eliminate the coupling f̂B from (53), we obtain the invariant
form factor for B → K∗γ

F̂1(0) ≃ 5 (56)

(with µ2 ∼ 1GeV2), which translates to the static limit of the decay form factor (at the
same µ2)

F1(0) = F̂1(0)/m
3/2
B ≃ 0.4 . (57)

This number appears to be 30% higher than the result in (46). The scale dependence re-
minds of possible logarithmic corrections which we have ignored. Note that the standard
logarithmic factor corresponding to the hybrid anomalous dimension of the interpolat-
ing current of the B-meson cancels in the ratio of (53) and (55). However, additional
corrections can appear, similar to the Sudakov-type corrections, which in the context of
inclusive radiative decays B → Xs + γ have been discussed in [11]. A related discussion
of the perturbative corrections produced by the hard gluon exchange can be found in
[13]. Since these corrections may exponentiate, the power law in (57) should be taken
with caution. A study of the perturbative two-loop corrections to the sum rule would be
welcome, but is beyond the tasks of this paper.

The contributions of higher twist to the sum rule (23) do not spoil the existence of the
heavy-quark expansion. In this case, again, explicit enhancement factors ∼ m2

b/t ∼ O(mb)
are compensated by the smallness of the wave functions. However, in contrast with the
contributions of higher-dimension condensates to the sum rule in (55), the higher-twist
contributions to (53) generally bring in factors (ω/τ), which indicates that the structure
of the expansion is different. We hope to return to this question in the future.

Thus, we conclude that the light-cone sum rules, which we suggest in this paper,
remain well-defined in the heavy b-quark limit, since all the contributions appear to have
the same power behaviour at mb → ∞. The same conclusion has been drawn in the work
[19] for the case of semileptonic B → πeν decays.

7 The q2-dependence and the interrelation of

radiative and semileptonic B-decay form factors

Up to this point, we have been discussing the radiative decay form factor F1 at q2 = 0.
Now we are in a position to calculate the q2-dependence. The interest in the q2-dependence
is due to the fact that within most of the existing approaches the calculations are actually
done for high values of q2, close to the maximum possible value q2

max = (mB − mK∗)2,
and then extrapolated to q2 = 0 using plausible assumptions like the pole-dominance
approximation. Within the QCD sum rule approach the q2 dependence of form factors
can be calculated in a wide interval of q2, see e.g. [25, 24].



The QCD sum rule for the form factor F1 for finite values of q2 is obtained from the
one given in (23) by trivial modifications. We obtain

fBm
2
B

mb +mq
2F1(q

2)e−(m2

B
−m2

b
)/t =

=
∫ 1

0
du

1

u
exp

[

− ū
t

(
m2

b − q2

u
+m2

V

)]

θ

[

s0 −
m2

b − ūq2

u
− ūm2

V

]{

mbf
⊥
V φ⊥(u)

+ umV fV g
(v)
⊥ (u) +

m2
b + q2 − u2m2

V + ut

4ut
mV fV g

(a)
⊥ (u)

}

. (58)

The region of applicability of this sum rule is restricted by the requirement that the value
of q2 −m2

b be sufficiently less than zero, so that the correlation function (15) is evaluated
in the Euclidean region. In order not to introduce an additional scale in the problem, we
require that q2 −m2

b ≤ (p + q)2 −m2
b , which translates to the condition that m2

b − q2 is
of order of the typical Borel parameter t ∼ 5–8 GeV2. Thus, we end up with an upper
bound for the applicability of the QCD calculation q2 < 15–17 GeV2, which is a few
GeV2 below the zero-recoil point. The results are shown in Fig. 6. It is seen that the
stability of the sum rules becomes worse with the increase of q2. The reason is that the
omitted contributions of higher twists are suppressed by factors 1/(m2

b − u(p + q)2) in
the momentum space, which translates into suppression by powers of 1/(ut) after the
Borel transformation. At q2 = 0 the average value of u under the integral is of order 0.8,
but it decreases to ∼ 0.6 at q2 ≃ 15 GeV2. Thus, in order not to enhance the higher
twist effects one should somewhat increase the value of the Borel parameter t at high
q2. This increase, however, potentially comes in conflict with the requirement that the
Borel parameter t be small enough to allow to separate the B-meson contribution from
the continuum. Thus, in general, the light-cone sum rules for large values of q2 are less
reliable than at q2 = 0. The calculation shown in Fig. 6 was done using the rescaled Borel
parameter t→ t/〈u〉(q2), where 〈u〉(q2) is the average value of u under the integral. This
allows for a certain improvement of the stability.

For the radiative decays discussed here, the sum rules do not contradict the pole-type
behaviour in the region 0 ≤ q2 ≤ 10 GeV2:

F1(q
2) =

F1(0)

1 − q2/m2
pole

(59)

with the pole masses of order 3.8–4.2 GeV. A much better quality of the fit is provided,
however, by the dipole formula

F1(q
2) =

F1(0)

(1 − q2/m2
dipole)

2
(60)

with mdipole = 5.6, 5.4, 5.2, and 4.9 GeV for Fig. 6a, b, c, and d, respectively.
In the case of B → K∗γ decays, an important result was derived by Isgur and Wise in

[12] and by Burdman and Donoghue in [13], where it has been shown that in the heavy
b-quark limit an exact relation exists between the form factor F1 and the semileptonic



form factors defined by:

〈K∗(p′, λ)|s̄γµ(1−γ5)b|B̄(p)〉 =
2V (q2)

mB +mK∗

ǫµνρσe
∗(λ)νpρp

′σ− i(mB +mK∗)A1(q
2)e∗(λ)

µ + . . .

(61)
where the ellipses denote terms proportional to (p+ p′)µ or qµ. According to [12, 13]:

FB→K∗

1 (q2) =
q2 +m2

B −m2
K∗

2mB

V (q2)

mB +mK∗

+
mB +mK∗

2mB
A1(q

2) , (62)

as far as the value of q2 is sufficiently close to the point q2
max = (mB − mK∗)2 ≃ 19

GeV2. Similar relations can of course be derived for other radiative decays. The central
problem in using predictions based on the heavy quark effective theory to the rare B-
decays is whether this relation is satisfied for small values of q2, as suggested in [12, 13],
and what is the size of the power 1/mb corrections. Our main result in this section is that
the relation in (62) is fulfilled in the QCD sum rule approach discussed here to a good
accuracy for finite b-quark masses and for all momentum transfers.

The sum rules for the semileptonic form factors entering (62) can be derived in a
similar way, repeating the steps described in section 3. A simple calculation yields
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,
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=
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du
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exp
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. (64)

Note that the three sum rules in (58), (63), and (64) involve the same wave functions as
specified in section 3.

It is now easy to check the Isgur-Wise relation by forming the ratio

R(q2) = F1(q
2)/F IW

1 (q2) , (65)

where F1(q
2) is the form factor of the radiative decay according to (58), and F IW

1 (q2) is
the particular combination of the semileptonic form factors, which enters on the r.h.s. of
(62), and which is evaluated by using to the sum rules (63) and (64). The ratio (65) is
shown as a function of q2 in Fig. 7 for the two decays B → K∗γ and B → ργ, and is
practically the same for the two remaining decays Bs → φγ and Bs → K∗γ. We find
that the relation between radiative and semileptonic form factors is satisfied with a high



accuracy for all momentum transfers. For the physically relevant point q2 = 0 a typical
value of the ratio R is about 0.92–0.95. These predictions should be rather reliable, since
many of the uncertainties in the individual decay rates are greatly reduced in the ratios.

Since the semileptonic decay B → K∗ + ℓ + νℓ does not occur in nature, tests of the
Isgur-Wise relation must take into account the correction for the SU(3) breaking between
B → K∗ and B → ρ semileptonic form factors. From our sum rule calculation we get

A1(0)B→ρ/A1(0)B→K∗

= 0.76 ± 0.05 ,

V (0)B→ρ/V (0)B→K∗

= 0.73 ± 0.05 . (66)

As a by-product of our analysis, we have derived the q2 dependence of the semileptonic
decay form factors, V and A1, which is shown in Fig. 8 for the transition B → ρ+ ℓ+ νℓ.
In Table 1 the values for V (q2 = 0) and A1(q

2 = 0) are compared with the corresponding
results from other approaches [58]–[62]. We find a satisfactory agreement with the quark
models, while our results are somewhat lower than previous QCD sum rule estimates,
which were done using the traditional approach. In agreement with [58] we obtain a
steeper increase of the form factor V (q2) with q2, compared to A1(q

2), although values of
the slopes come out to be different.

Predictions of the traditional sum rules should be more reliable at the values m2
b−q2 =

O(mb) than at q2 = 0, since in this region they do not suffer from large contributions
of the operators of high dimension, see the detailed discussion in the appendix. In the
light-cone sum rules the situation is opposite, so that our results are to a large extent
complementary to the calculation in [58, 60]. It is worth while to note that the difference
in predictions is minimal at intermediate q2 ∼ 5–10 GeV2, i.e. exactly in the region where
both the approaches should work well.

Table 1: Form factors for the semileptonic decay B → ρ+ ℓ+ νℓ

Reference A1(0)B→ρ V (0)B→ρ

This paper 0.24 ± 0.04 0.28 ± 0.06
[58]a 0.5 ± 0.1 0.6 ± 0.2
[59]a 0.35 ± 0.16 0.47 ± 0.14
[60]b 0.28 0.33
[61]b 0.05 0.27
[62]c 0.21 1.04

a: QCD sum rules
b: Quark models
c: HQET + chiral perturbation theory



8 Summary and Conclusions

Motivated by the discovery of the electromagnetic penguins through the decay B →
K∗+γ, we have presented an alternative method of calculating the transition form factors
in this and related decays using the approach of QCD sum rules on the light cone. Our
calculations give FB→K∗

1 = 0.32 ± 0.05; combined with the estimates of the inclusive
branching ratio BR(B → Xs + γ) = (3.0 ± 1.2) × 10−4 in the Standard Model [3], this
yields BR(B → K∗ +γ) = (4.8±1.5)×10−5, which is in reasonably good agreement with
the observed branching ratio (4.5±1.5±0.9)×10−5 measured by the CLEO collaboration.

We use the same method to calculate the related form factors in the decays Bu,d →
ρ + γ, Bd → ω + γ, Bs → φ + γ and Bs → K∗ + γ. These decays can be related to the
already discussed and measured decay Bu,d → K∗ + γ. To this end, we have evaluated
in detail the numerical effect of the SU(3)-breaking in the form factors. This fixes the
decay width Γ(Bs → φ + γ), which involves the same CKM matrix element |Vts| as the
decay width Γ(Bu,d → K∗ + γ). Since the form factors for the two decay modes are
comparable in size, see Fig. 3 and eq. (46), and since the lifetimes of the Bu, Bd and Bs

mesons are expected to be very similar — an expectation which is consistent with present
experiments — we estimate that BR(Bs → φ+ γ) ≃ BR(Bu,d → K∗ + γ).

More interesting, however, are the CKM-suppressed decay modes discussed above.
A measurement of both the CKM-allowed and CKM-suppressed radiative decays B →
V + γ would give direct information on the CKM matrix element ratio |Vtd|/|Vts|. The
form factors needed for such determination are plotted in Fig. 4, showing the ratios

of FB→ρ
1 /FB→K∗

1 , FBs→K∗

1 /FBs→φ
1 and FBs→K∗

1 /F
Bu,d→K∗

1 . The numerical results for the
form factor ratios are given in eqs. (47)–(49). The ratios of the branching ratios BR(B →
ω + γ)/BR(B → K∗ + γ) and BR(Bs → K∗ + γ)/BR(B → K∗ + γ) as functions
of |Vtd|/|Vts| are shown in Fig. 9 (B = Bu or Bd.). As already stressed, these ratios
are practically independent of mt and of the QCD scale parameter µ. The dependence
of the ratios on the various parameters endemic to the QCD sum rule approach also
becomes rather mild, as opposed to the predictions for the partial decay widths themselves.
Therefore, the two curves shown in Fig. 9 should give a fair representation of the residual
theoretical error, and they allow a rather clean determination of the ratio of the CKM
matrix elements |Vtd|/|Vts| as and when the required data for the ratios of branching ratios
become available.

It should be pointed out here that similar relations have been derived for the ratios
of the inclusive branching ratios BR(B → Xd + γ)/BR(B → Xs + γ) in [4], and for the
ratios of the B0–B0 mixing parameters xd and xs [67]. In particular, the Standard Model
predicts:

xd

xs

=
τBd

MBd

(
f 2

Bd
BBd

)

τBs
MBs

(
f 2

Bs
BBs

)
∣∣∣∣
Vtd

Vts

∣∣∣∣
2

, (67)

where BBd
and BBs

are the hadronic bag constants. Since all dependence on the t-quark
mass and the QCD renormalization of the box amplitudes drops out, we are left with
the square of the ratio of CKM matrix elements, multiplied by a factor that reflects
SU(3)flavour-breaking effects. With the known values of xd and BR(B → K∗ + γ), a
measurement of xs and of the CKM-suppressed radiative decays would provide valuable



quantitative tests on the CKM matrix and, in particular, its unitarity.
In order to obtain an estimate of the absolute branching ratios for the CKM-suppressed

decays, we use the constraints on the matrix element |Vtd| that already exist from the
measurement of the mixing ratio xd. The present value xd = 0.71 ± 0.07 [45] yields the
model dependent bound 0.005 < |Vtd| < 0.012 [45]. This in turn gives

0.10 ≤ |Vtd|
|Vts|

≤ 0.33, (68)

where we have used the CKM unitarity constraint and recent data giving |Vts| ≃ |Vcb| =
0.042 ± 0.005 [33]. We can combine this bound with Fig. 9 to predict:

0.01 ≤ BR(B → ω + γ)

BR(B → K∗ + γ)
≤ 0.10, (69)

with the ratio BR(B → ρ + γ)/BR(B → K∗ + γ) bounded likewise. While this gives
a ball-park estimate for the branching ratios in question, it is clear from this numerical
exercise that a measurement of the above ratio within a factor 2 would enormously reduce
the present (model-dependent) uncertainty on the CKM matrix element ratio |Vtd|/|Vts|.

The main theoretical content of this paper is in pointing out and providing general
arguments for the light-cone QCD sum rule approach to be a more adequate tool for
the study of heavy meson decay form factors compared to the traditional approach. The
principal input in the light-cone sum rules are the wave functions of vector mesons, and
the accuracy of our calculation can be substantially improved by taking into account the
wave functions of twist 3 and twist 4. For the case of the π-meson, a complete set of wave
functions to this accuracy is given in [39]. For vector mesons, this problem is not solved
yet, and is of acute practical interest. Some new results concerning the interrelation of
the transverse and longitudinal wave functions of vector mesons are given in section 4.

We have also studied the heavy-quark mass dependence of F1 in the region mc ≤
mQ ≤ mb. This is useful for comparison with lattice-QCD results where the heavy quark
systems at present are calculated in the vicinity of mc and extrapolated to mb. We find
that the transition form factor F1 scales approximately in this region as F1 ∼ 1/mb, and
has a value F1 = 0.85± 0.13 for mB equal to the D-meson mass, i.e. for the (unphysical)
process D → K∗ + γ.

Apart from the phenomenologically interesting value of the form factor FB→V
1 at the

on-shell point q2 = 0, we have investigated the behaviour of F1 as a function of q2. The
case q2 6= 0 contributes to the decays B → V + ℓ+ℓ− via off-shell photons. In addition,
we have derived the light-cone QCD sum rules for the form factors A1(q

2) and V (q2),
describing the semileptonic decay B → ρ + ℓ νℓ. It will be interesting to compare them
with data on the semileptonic decay B → ρ + ℓ νℓ, as and when these become available.
Another use of this sum rules is to check the relation between the radiative decay form
factor FB→K∗

1 and the semileptonic form factors in B → ρ + ℓ νℓ, which was derived
in [12, 13] using the heavy-quark symmetry and for q2 near the kinematic point q2

max.
We have shown that the ratio F1(q

2)/F IW
1 (q2) evaluated in the QCD sum rule approach

remains very close to unity in the complete kinematic range of q2 which is available in the
CKM-suppressed semileptonic decays.



In summary, we have given a number of predictions here in the crucial area of ex-
clusive radiative and semileptonic B-decays, involving the CKM-suppressed and CKM-
allowed transitions using QCD sum rules on the light-cone. These predictions are specific
to this approach and it will be instructive to confront them with data. The existing
data on BR(B → K∗ + γ) are reasonably well explained, and we argue that our results
allow to quantify the ratios of CKM-allowed and CKM-suppressed exclusive radiative
B-decays. This would prove useful in determining the CKM ratio |Vtd|/|Vts| in a fairly
model-independent way.
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Appendix

Three-point sum rule

In this appendix we compare our approach, for the particular case of B → K∗γ decays,
with the results of the standard QCD sum rule analysis [6, 8, 7]. Here, the starting point
is the operator product expansion for the three-point function involving the penguin
operator and the interpolating currents for both the B-meson and the K∗-meson

i2
∫
dx dy eipx+iqy〈0|T{[d̄γαs](x)[s̄σµνqνb](y)[̄biγ5d](0)}|0〉 (A.1)

in which the contribution of interest is identified with the one having poles at p2 = m2
K∗

and (p+ q)2 = m2
B. The standard treatment, details of which we are not going to present

here, leads to the following sum rule:

fK∗mK∗fBm
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t22
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2m2
b(2mb +ms)

t1t2
+

6mb + 8ms

t2
− 2ms

t1

}

, (A.2)

where ρ(s1, s2) is the spectral density of the triangle diagram in Fig. 10a

ρ(s1, s2) =
m4

bs1

(s2 − s1)3
+mbms

s2 − s1 −m2
b

(s2 − s1)2
, (A.3)

and we have calculated also the contribution of the quark condensate in Fig. 10b, and of
the mixed condensate in Fig. 10c (a typical graph is shown). The contributions of the
gluon condensate and of the four-quark condensate are negligible [7]. In contrast with
ref. [8], we give the answer with O(ms) corrections included. To the accuracy that these
corrections are put to zero, our sum rule agrees with the one given in [8], but for the sign
in front of the third term in the contribution of the mixed condensate. Numerically, the
difference is negligible. Note that in contrast to the light-cone sum rules we have now two
Borel parameters, t1 for the K∗-meson and t2 for the B-meson, which should be taken
two times larger than the Borel parameters in the corresponding two-point sum rules (cf.
[25]). The quantity sK

0 = 1.7 GeV2 is the continuum threshold in the sum rules for the
K∗-meson, and ms is the mass of the strange quark, which is of order ms = 150 MeV.
The other entries have been specified in the text.

A numerical treatment of the sum rule in (A.2) yields values of the form factor of
order

FB→K∗

1 (0) ≃ 0.5–0.6 (A.4)



which is in agreement with the analysis in [6, 7]. The lower value ∼ 0.38 quoted in [7] was
obtained by the rescaling of a similar value ∼ 0.55 from the scale of the typical Borel pa-
rameter to the scale µ = mb, using the large anomalous dimension of the penguin operator
(4). We have not understood the reasoning for such a rescaling, since the renormalization
group treatment of the effective Hamiltonian in (2) makes sense at scales µ > mb only.
A somewhat smaller value obtained in ref. [8] is due to a smaller value of the quark
condensate and due to a higher value fB = 180 MeV used in [8].

The value in (A.4) appears to be considerably larger than our result in (46). We are
going to claim, however, that the sum rule in (A.2) is ill-behaved in the limit of heavy
b-quark, and is less reliable.

An inspection of the sum rule in (A.2) shows that various terms in it have a different
behaviour in the limitmb → ∞. One easily finds that the perturbation theory contribution
to (A.2) yields the form factor F1(0) ∼ O(m

−3/2
b ), the quark condensate produces a

contribution of order m
1/2
b , and the mixed condensate contribution is of order m

3/2
b . Thus,

the sum rule (A.2) blows up in the limit mb → ∞.
This problem has actually been known for a long time, and was originally found in

the QCD sum rule calculations of the pion form factor [22, 23]. In technical terms,
the problem appears because the operator product expansion for three-point functions
involves the dimensionless parameter (m2 − q2)/t, increasing powers of which multiply
the contributions of local operators of higher dimensions. In the case of light quark
systems, m2 = 0 and the Borel parameter is of order 1 GeV2. Thus the expansion breaks
down at sufficiently large values of q2. In the case of heavy–light mesons t ∼ O(mb), and
for q2 = 0 the operator product expansion involves increasing powers of the heavy-quark
mass. In the present case, we observe a considerable enhancement of the contribution of
the mixed condensate, and conclude that higher-order corrections, e.g. proportional to
the dimension-7 condensate 〈ψ̄g2G2ψ〉, can influence the result significantly. It has been
claimed recently [63] that this condensate is much larger than its factorized value.

In physical terms, the reason of the difficulty with the traditional three-point sum rules
in the mb → ∞ limit is that the operator product expansion does not take into account
the effect of the finite correlation length between the quarks in the physical vacuum.
A possible remedy, suggested in [64], is to use the expansion in non-local condensates,
which take into account this effect in a model-dependent way, see e.g. [65]. Following
Radyushkin, we write down the non-local quark condensate in the Borel representation:

〈d̄(x)d(0)〉 = 〈d̄d〉
∫ ∞

0
dν eνx2/4f(ν). (A.5)

Moments of the function f(ν) are determined by vacuum expectation values of local
operators

∫ ∞

0
dν f(ν) = 1 ,

∫ ∞

0
dν νf(ν) =

1

4
〈d̄σgGd〉/〈d̄d〉 ≃ 0.2 GeV2 , (A.6)

and similar relations for higher moments. An effect in the sum rule (A.2) is that in the



term proportional to the quark condensate one should make a replacement

〈d̄d〉 → 〈d̄d〉
∫ t

0
dν f(ν) exp

{

−m
2
b

t2

ν

t− ν

}

(A.7)

where t ≡ t1t2/(t1+t2), and discard the contribution of the mixed quark–gluon condensate,
since its contribution is partly included in (A.5). In the limit of the heavy b-quark mass
the integral over ν in (A.7) is dominated by contributions of small ν; thus the behaviour of
f(ν) at ν → 0 is of crucial importance. Note that no information about this behaviour can
be extracted from known values of a few first moments. In a confining theory such as QCD
one should expect that correlation functions decrease exponentially at large distances in
Euclidean space,

〈d̄(x)d(0)〉 x2→−∞∼ exp{−a
√
−x2} , (A.8)

where a is the correlation length. Existence of a finite correlation length in the physical
vacuum is a part of a common wisdom about confinement and a starting point of many
existing models of the vacuum (see e.g. [66]). It is easy to show that the finite correlation
length implies quite generally the exponential behaviour of the function f(ν) at small ν:

f(ν) ∼ e−a2/ν . (A.9)

Inserting this behaviour in (A.7) and taking the limit mb → ∞ we obtain to the expo-
nential accuracy the contribution of the quark condensate to be

∼ exp{−2amb/
√
t1t2} . (A.10)

Since t1 = O(1) and t2 = O(mb), this result means that the contribution of the quark
condensate decreases as exp{−√

mb}. Hence, the perturbative contribution dominates

the sum rule in this limit, yielding the same behaviour F1(0) ∼ m
−3/2
b which is intrinsic to

the light-cone sum rules in the text. Note that this result is a quite general consequence
of the existence of a finite correlation length in the QCD vacuum. It is actually not
surprising, since the power behaviour of exclusive process with large momentum transfers
[20, 21] is given by perturbative diagrams. In the present case, the diagrams with hard
gluon exchange yield the same power behaviour as the ones considered here, see [19].

To summarize, we argue that the light-cone sum rule written in (23) remains well-
defined in the limit of the heavy b-quark mass, similar to the traditional QCD sum rules
for the two-point functions, which can be written directly in the heavy-quark effective
theory [57]. The heavy-quark limit does not exist, however, in the standard sum rules
for three-point functions, as the one in (A.2). This property of the light-cone sum rules
argues in favour of our approach.
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Figure captions

Fig. 1 The leading contribution (a) and the gluon correction (b) to the correlation func-
tion in (15).

Fig. 2 The leading-twist wave function φ⊥ (19) from the sum rule analysis in [36] at the
scale µ2 = 5 GeV2 for (a) ρ- (solid line) and φ- (dashed dotted line) mesons and (b)
for the K∗-meson. The wave function for K∗ is also shown at the low scale µ2 = 1
GeV2 (dashed line). The dotted lines correspond to the asymptotic wave function
φas
⊥ = 6u(1 − u).

Fig. 3 Stability plots for the sum rule in (23) as a function of the Borel parameter for
B → K∗γ, B → ργ, Bs → φγ, and Bs → K∗γ, see a, b, c and d, respectively.
Dashed lines correspond to sB

0 = 35 GeV2 and dotted lines to sB
0 = 33 GeV2 (with

sBs

0 given in (42)). For each value of s0 curves are shown for mb = 4.6 GeV (upper
curve), mb = 4.7 GeV (middle) and mb = 4.8 GeV (lowest curve).

Fig. 4 Ratios of the form factors F1(0) for the processes (a) B → ργ and B → K∗γ,
(b) Bs → K∗γ and Bs → φγ, and (c) Bs → K∗γ and B → K∗γ. Dashed lines
correspond to sB

0 = 35 GeV2 and dotted lines to sB
0 = 33 GeV2 (with sBs

0 given in
(42)). The corresponding upper curves are for mb = 4.6 GeV and the lower ones
for mb = 4.8 GeV.

Fig. 5 Dependence of the form factor F1(0) on the quark mass. The various parameters
are scaled according to (50). Solid lines correspond to τ = 1.0 GeV and the dotted
lines to τ = 0.6 GeV. The corresponding upper curves are for Λ̄ = 600 MeV with
ω0 = 1.2 GeV, and the lower ones for Λ̄ = 500 MeV with ω0 = 1.0 GeV. For
comparison the results corresponding to the parameters discussed in section 5 are
indicated by vertical bars.

Fig. 6 Momentum dependence of the form factors F1(q
2) for (a) B → K∗γ, (b) B → ργ,

(c) Bs → φγ, and (d) Bs → K∗γ. Dotted lines correspond to t = 5 GeV2/〈u〉
and dashed lines to t = 8 GeV2/〈u〉. The corresponding upper curves are for mb =
4.6 GeV and the lower ones for mb = 4.8 GeV.

Fig. 7 Momentum dependence of the ratio of radiative and semileptonic form factors (a)
B → K∗γ and (b) B → ργ. Dotted lines correspond to t = 5 GeV2/〈u〉 and dashed
lines to t = 8 GeV2/〈u〉. The corresponding upper curves are for mb = 4.8 GeV
and the lower ones for mb = 4.6 GeV.

Fig. 8 Momentum dependence of the form factors A1(q
2) (a) and V (q2) (b) for B → ργ.

Dotted lines correspond to t = 5 GeV2/〈u〉 and dashed lines to t = 8 GeV2/〈u〉.
The corresponding upper curves are for mb = 4.6 GeV and the lower ones for
mb = 4.8 GeV.

Fig. 9 Ratio of the branching ratios BR(B → ωγ)/BR(B → K∗γ), where B = Bu or
Bd, and BR(Bs → K∗γ)/BR(B → K∗γ), as a function of the CKM matrix elements
|Vtd|/|Vts|. The two lines correspond to the errors given in (47).



Fig. 10 Contributions of perturbation theory and of vacuum condensates to the sum
rule in (A.2).

Fig. 11Y Stability plot for the sum rule in (A.2)
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