2,799 research outputs found

    The natural history of bugs: using formal methods to analyse software related failures in space missions

    Get PDF
    Space missions force engineers to make complex trade-offs between many different constraints including cost, mass, power, functionality and reliability. These constraints create a continual need to innovate. Many advances rely upon software, for instance to control and monitor the next generation ‘electron cyclotron resonance’ ion-drives for deep space missions.Programmers face numerous challenges. It is extremely difficult to conduct valid ground-based tests for the code used in space missions. Abstract models and simulations of satellites can be misleading. These issues are compounded by the use of ‘band-aid’ software to fix design mistakes and compromises in other aspects of space systems engineering. Programmers must often re-code missions in flight. This introduces considerable risks. It should, therefore, not be a surprise that so many space missions fail to achieve their objectives. The costs of failure are considerable. Small launch vehicles, such as the U.S. Pegasus system, cost around 18million.Payloadsrangefrom18 million. Payloads range from 4 million up to 1billionforsecurityrelatedsatellites.Thesecostsdonotincludeconsequentbusinesslosses.In2005,Intelsatwroteoff1 billion for security related satellites. These costs do not include consequent business losses. In 2005, Intelsat wrote off 73 million from the failure of a single uninsured satellite. It is clearly important that we learn as much as possible from those failures that do occur. The following pages examine the roles that formal methods might play in the analysis of software failures in space missions

    Heating Augmentation for Short Hypersonic Protuberances

    Get PDF
    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9:5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hyper- sonic protuberances (k/delta < 0.33) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation

    Standard and Embedded Solitons in Nematic Optical Fibers

    Full text link
    A model for a non-Kerr cylindrical nematic fiber is presented. We use the multiple scales method to show the possibility of constructing different kinds of wavepackets of transverse magnetic (TM) modes propagating through the fiber. This procedure allows us to generate different hierarchies of nonlinear partial differential equations (PDEs) which describe the propagation of optical pulses along the fiber. We go beyond the usual weakly nonlinear limit of a Kerr medium and derive an extended Nonlinear Schrodinger equation (eNLS) with a third order derivative nonlinearity, governing the dynamics for the amplitude of the wavepacket. In this derivation the dispersion, self-focussing and diffraction in the nematic are taken into account. Although the resulting nonlinear PDEPDE may be reduced to the modified Korteweg de Vries equation (mKdV), it also has additional complex solutions which include two-parameter families of bright and dark complex solitons. We show analytically that under certain conditions, the bright solitons are actually double embedded solitons. We explain why these solitons do not radiate at all, even though their wavenumbers are contained in the linear spectrum of the system. Finally, we close the paper by making comments on the advantages as well as the limitations of our approach, and on further generalizations of the model and method presented.Comment: "Physical Review E, in press

    Statistics of Lyapunov exponent in one-dimensional layered systems

    Full text link
    Localization of acoustic waves in a one dimensional water duct containing many randomly distributed air filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties are also explored extensively. The results reveal that in this system the single parameter scaling is generally inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This contradicts the earlier observations in an optical case. We compare the results with two optical cases and give a possible explanation of the origin of the different behaviors.Comment: 6 pages revtex file, 6 eps figure

    Study of Neutron-Induced Ionization in Helium and Argon Chamber Gases

    Full text link
    Ion chambers used to monitor the secondary hadron and tertiary muon beam in the NuMI neutrino beamline will be exposed to background particles, including low energy neutrons produced in the beam dump. To understand these backgrounds, we have studied Helium- and Argon-filled ionization chambers exposed to intense neutron fluxes from PuBe neutron sources (En=110E_n=1-10 MeV). The sources emit about 108^8 neutrons per second. The number of ion pairs in the chamber gas volume per incident neutron is derived. While limited in precision because of a large gamma ray background from the PuBe sources, our results are consistent with the expectation that the neutrons interact purely elastically in the chamber gas.Comment: accepted for publication in NIM

    Complex taxonomy and global phylogeography of the well-known tropical earthworm Pontoscolex corethrurus

    Full text link
    Few earthworm species are peregrine and among them, Pontoscolex corethrurus is the most well-known. Probably native from the Guyana shield, this earthworm is nowadays distributed worldwide, in the tropical and sub-tropical zones. It is found in a wide range of habitats, from apparently pristine to any kind of human-disturbed environments. P. corethrurus presents several characteristics of a successful invader: r-strategy, parthenogenesis reproduction and ecological and reproductive plasticity. Although its ecological interactions with the environment were well documented, the taxonomic status of this earthworm was unclear. We investigated the phylogenetic relationships within the genus Pontoscolex at a global scale (25 countries), focusing on morphologically indistinguishable lineages using the mitochondrial COI and 16S markers, the nuclear ITS 2 and 28S markers and a large-scale multilocus sequence data matrix obtained using the Anchored Hybrid Enrichment (AHE) phylogenomic method. Four cryptic species were discovered within the P. corethrurus species complex and one of them, P. corethrurus L1 was particularly widespread. Although sympatry between L1, L3 and L4 was observed, no case of hybridization was detected between L1 and the two other cryptic species, confirming the status of species of P. corethrurus L1. A population genetics study of this species using COI sequences and AFLP data revealed a low mitochondrial genetic diversity and a high proportion of clones in some populations, in accordance with the principal mode of reproduction of the species (i.e., parthenogenesis). However, variable levels of genetic diversity among populations and results of gametic disequilibrium analysis suggesting recombination in several populations, confirmed a mixed-mating strategy (sexual reproduction and parthenogenesis)

    A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator

    Full text link
    We evaluate from first principles the self-consistent Hartree-Fock energies for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott insulator on a two-dimensional square lattice. We find that nearest-neighbor Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate coupling 3 < U/t <8. This stabilization is mediated through the generation of ``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes cloaked by a meron-vortex in the spin-flux AFM background are charged bosons. Our static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices. This upper bound is lower than the energy of the corresponding charged stripe configurations. A finite density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad mid-infrared band in the optical absorption spectrum as observed experimentally. At very low doping (below 0.05) the doping charges create extremely tightly bound meron-antimeron pairs or even isolated conventional spin-polarons, whereas for very high doping (above 0.4) the spin background itself becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at intermediate coupling and intermediate doping concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some figure

    Electronic structure, exchange interactions and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As

    Full text link
    We complete our earlier (Phys. Rev. B, {\bf 66}, 134435 (2002)) study of the electronic structure, exchange interactions and Curie temperature in (GaMn)As and extend the study to two other diluted magnetic semiconductors (GaCr)As and (GaFe)As. Four concentrations of the 3d impurities are studied: 25%, 12.5%, 6.25%, 3.125%. (GaCr)As and (GaMn)As are found to possess a number of similar features. Both are semi-metallic and ferromagnetic, with similar properties of the interatomic exchange interactions and the same scale of the Curie temperature. In both systems the presence of the charge carriers is crucial for establishing the ferromagnetic order. An important difference between two systems is in the character of the dependence on the variation of the number of carriers. The ferromagnetism in (GaMn)As is found to be very sensitive to the presence of the donor defects, like AsGa_{\rm Ga} antisites. On the other hand, the Curie temperature of (GaCr)As depends rather weakly on the presence of this type of defects but decreases strongly with decreasing number of electrons. We find the exchange interactions between 3d atoms that make a major contribution into the ferromagnetism of (GaCr)As and (GaMn)As and propose an exchange path responsible for these interactions. The properties of (GaFe)As are found to differ crucially from the properties of (GaCr)As and (GaMn)As. (GaFe)As does not show a trend to ferromagnetism and is not half-metallic that makes this system unsuitable for the use in spintronic semiconductor devices

    Time-frequency detection algorithm for gravitational wave bursts

    Get PDF
    An efficient algorithm is presented for the identification of short bursts of gravitational radiation in the data from broad-band interferometric detectors. The algorithm consists of three steps: pixels of the time-frequency representation of the data that have power above a fixed threshold are first identified. Clusters of such pixels that conform to a set of rules on their size and their proximity to other clusters are formed, and a final threshold is applied on the power integrated over all pixels in such clusters. Formal arguments are given to support the conjecture that this algorithm is very efficient for a wide class of signals. A precise model for the false alarm rate of this algorithm is presented, and it is shown using a number of representative numerical simulations to be accurate at the 1% level for most values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR

    Minimal model for aeolian sand dunes

    Full text link
    We present a minimal model for the formation and migration of aeolian sand dunes. It combines a perturbative description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The latter are shown to provide the characteristic length scale. The model can explain the origin of important features of dunes, such as the formation of a slip face, the broken scale invariance, and the existence of a minimum dune size. It also predicts the longitudinal shape and aspect ratio of dunes and heaps, their migration velocity and shape relaxation dynamics. Although the minimal model employs non-local expressions for the wind shear stress as well as for the sand flux, it is simple enough to serve as a very efficient tool for analytical and numerical investigations and to open up the way to simulations of large scale desert topographies.Comment: 19 pages, 22 figure
    corecore