10 research outputs found

    Measurement of direct photon emission in K+π+π0γK^+ \to \pi^+ \pi^0 \gamma decay using stopped positive kaons

    Full text link
    The radiative decay K+π+π0γK^+ \to \pi^+ \pi^0 \gamma (Kπ2γK_{\pi 2 \gamma}) has been measured with stopped positive kaons. A Kπ2γK_{\pi 2 \gamma} sample containing 4k events was analyzed, and the Kπ2γK_{\pi 2 \gamma} branching ratio of the direct photon emission process was determined to be [6.1±2.5(stat)±1.9(syst)]×106[6.1\pm2.5({\rm stat})\pm1.9({\rm syst})]\times 10^{-6}. No interference pattern with internal bremsstrahlung was observed.Comment: 12 pages, 6 figures, 2 tables, to be published in Phys. Lett.

    Measurement of K^+ \to \pi^0 \mu^+ \nu \gamma decay using stopped kaons

    Full text link
    The K^+ \to \pi^0 \mu^+ \nu \gamma (Kμ3γK_{\mu 3 \gamma}) decay has been measured with stopped positive kaons at the KEK 12 GeV proton synchrotron. A Kμ3γK_{\mu 3 \gamma} sample containing 125 events was obtained. The partial branching ratio Br(Kμ3γ,Eγ>30MeV,θμ+γ>20)Br(K_{\mu 3 \gamma}, E_{\gamma}>30 {\rm MeV}, \theta_{\mu^+ \gamma}>20^{\circ}) was found to be [2.4±0.5(stat)±0.6(syst)]×105[2.4 \pm 0.5(stat) \pm 0.6(syst)]\times 10^{-5}, which is in good agreement with theoretical predictions.Comment: 12 pages, 3 figures, to be published in Physics Letters

    Study of nuclear fragmentation at MPD/NICA

    Full text link
    Due to the much lower beam energy of NICA compared to the RHIC and LHC hadron colliders and the fixed target experiments at SPS the role and performance of the forward detectors of NICA are quite different. The Neutron Zero Degree Calorimeter could be used for the measurement and monitoring of luminosity, however with lower efficiency of neutron detection produced in ultra-peripheral collisions. The use of Forward Hadron Calorimeter for the determination of centrality is impossible by simply counting the number of spectators because of the ambiguity of the impact parameter dependence. This ambiguity could be removed if the angular distribution of the spectators will be taken into account. It is shown by the simulation with LAQGSM model that the forward multiplicity detector like V0 of ALICE could not be used for the determination of centrality. However it could provide the valuable information on the nuclear fragmentation of heavy ions

    Apparatus for a Search for T-violating Muon Polarization in Stopped-Kaon Decays

    Full text link
    The detector built at KEK to search for T-violating transverse muon polarization in K+ --> pi0 mu+ nu (Kmu3) decay of stopped kaons is described. Sensitivity to the transverse polarization component is obtained from reconstruction of the decay plane by tracking the mu+ through a toroidal spectrometer and detecting the pi0 in a segmented CsI(Tl) photon calorimeter. The muon polarization was obtained from the decay positron asymmetry of muons stopped in a polarimeter. The detector included features which minimized systematic errors while maintaining high acceptance.Comment: 56 pages, 30 figures, submitted to NI

    Measurement of Γ(Kμ3)/Γ(Ke3)\Gamma(K_{\mu 3})/\Gamma(K_{e3}) ratio using stopped positive kaons

    Full text link
    The ratio of the K+π0μ+νK^{+}\to \pi^{0} \mu^{+} \nu (Kμ3+K_{\mu3}^+) and K+π0e+νK^{+}\to \pi^{0} e^{+} \nu (Ke3+K_{e3}^+) decay widths, Γ(Kμ3)/Γ(Ke3)\Gamma(K_{\mu 3})/\Gamma(K_{e3}), has been measured with stopped positive kaons. Kμ3+K_{\mu3}^+ and Ke3+K_{e3}^+ samples containing 2.4×104\times 10^4 and 4.0×104\times 10^4 events, respectively, were analyzed. The Γ(Kμ3)/Γ(Ke3)\Gamma(K_{\mu3})/\Gamma(K_{e3}) ratio was obtained to be 0.671±\pm0.007(stat.)±\pm0.008(syst.) calculating the detector acceptance by a Monte Carlo simulation with the assumption of μ\mu-ee universality in Kl3+K_{l3}^+ decay. The coefficient of the q2q^2 dependent term of the f0f_0 form factor was also determined to be λ0\lambda_0=0.022±\pm0.005(stat.)±\pm0.004(syst.).Comment: 12 pages, 6 figure

    Study of nuclear fragmentation at MPD/NICA

    No full text
    Due to the much lower beam energy of NICA compared to the RHIC and LHC hadron colliders and the fixed target experiments at SPS the role and performance of the forward detectors of NICA are quite different. The Neutron Zero Degree Calorimeter could be used for the measurement and monitoring of luminosity, however with lower efficiency of neutron detection produced in ultra-peripheral collisions. The use of Forward Hadron Calorimeter for the determination of centrality is impossible by simply counting the number of spectators because of the ambiguity of the impact parameter dependence. This ambiguity could be removed if the angular distribution of the spectators will be taken into account. It is shown by the simulation with LAQGSM model that the forward multiplicity detector like V0 of ALICE could not be used for the determination of centrality. However it could provide the valuable information on the nuclear fragmentation of heavy ions

    Study of nuclear fragmentation at MPD/NICA

    No full text
    Due to the much lower beam energy of NICA compared to the RHIC and LHC hadron colliders and the fixed target experiments at SPS the role and performance of the forward detectors of NICA are quite different. The Neutron Zero Degree Calorimeter could be used for the measurement and monitoring of luminosity, however with lower efficiency of neutron detection produced in ultra-peripheral collisions. The use of Forward Hadron Calorimeter for the determination of centrality is impossible by simply counting the number of spectators because of the ambiguity of the impact parameter dependence. This ambiguity could be removed if the angular distribution of the spectators will be taken into account. It is shown by the simulation with LAQGSM model that the forward multiplicity detector like V0 of ALICE could not be used for the determination of centrality. However it could provide the valuable information on the nuclear fragmentation of heavy ions

    Dilepton Production at SIS Energies Studied with HADES

    No full text
    One of the main goals of the HADES experiment is to achieve a detailed understanding of dielectron emission from hadronic systems at moderate bombarding energies. Results obtained on electron pair production in elementary N+N collisions pave the way to a better understanding of the origin of the pair excess seen in heavy-ion collisions. This puzzling excess, reported first by the former DLS experiment, is now being investigated systematically by HADE
    corecore