64 research outputs found

    Photon Synthesis of Nanometric Films Based on Transitional Metal oxides for Multi-Parameter Sensors

    Get PDF
    The reactive pulsed laser deposition (RPLD) based on a KrF laser was used for photon synthesis of nanometric iron and chromium oxides films. RPLD allows controlling the thickness and stoichiometry of deposits with definite band gap. So RPLD was used for synthesizing nanometric iron and chromium oxides films for thermo-photo-chemical sensors. We compared sensing properties of iron and chromium oxides nanometric films deposited on <100>Si substrate by RPLD. These iron and chromium oxides films have semiconductor properties with the band gaps less than 1.0 eV. The largest photosensitivity of iron and chromium oxides films was about 44 Vc/W and 2.5 Vc/W, accordingly, for white light at power density ~ 6x10-3 W/cm2. Vc is “chemical” photo e.m.f.. Maximum value of thermo electromotive force (e.m.f.) coefficient of iron and chromium oxides films was about 1.65 mV/K and 3.5-4.5mV/K, accordingly. Iron oxides films were tested as chemical sensors: the largest sensitivity of NO molecules was at the level of 7x1012 cm-3. Our results showed that nanometric iron and chromium oxides films synthesized by UV photons can be used as up-to-date materials for multi-parameter sensors operating at moderate temperature

    Radiation Damage of Polycrystalline CVD Diamond with Graphite Electrical Contacts

    Get PDF
    In this work we show preliminary results of radiation damage for a polycrystalline diamond with graphite contacts in terms of time response after 62 MeV protons irradiation for a total fluence of (2.0±0.08)×1015 protons/cm2. In addition, we describe the realization of a new type of device made with graphite micro-strips by laser micro-writing on diamond surface. In this way we made 20 graphite micro-strips of width about 87 m and spacing between each other of about 60 ÎŒ\mum

    Realization and characterization of graphitic contacts on diamond by means of laser

    Get PDF
    This work deals with the realization and characterization of integrated graphitic contacts on diamond by means of laser irradiation (graphitization), in order to obtain good quality ohmic electrodes for nuclear radiation detectors to be used in high energy physics experiments. Unlike the conventional method used for the electrode production, which requires numerous steps and very well controlled environmental conditions, this alternative technique presents many advantages: the contacts are realized in air at room temperature in a single step. In this study, the characteristics of several graphitic structures realized on a diamond surface by changing the radiation-matter interaction parameters have been evaluated in order to define the best experimental conditions to create graphitic electrodes with low resistivity. The obtained results are promising: contacts perfectly adherent, with good charge collection properties, stable and resistant to ionizing radiation

    Diamond detectors with electrodes graphitized by means of laser

    Get PDF
    In the last years there has been an increase of interest in diamond devices because of the promising applications in different field, such as high-energy physics, radiotherapy and biochemical applications. In particular, a new frontier is represented by the realization of full-carbon detectors characterized by graphite electrodes, which give to the devices considerable advantages like high radiation hardness, perfect mechanical adhesion and good charge collection properties. In this paper the manufacturing of full-carbon devices and their detection performances are illustrated and compared to a reference diamond detector characterized by traditional electrodes

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Realistic absorption coefficient of each individual film in a multilayer architecture

    No full text
    A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures

    Nanoparticle and Nanorod Films Deposited by Matrix Assisted Pulsed Laser Evaporation

    No full text
    The promising results obtained with the MAPLE-deposition of nanostructured thin films, to be used in different fields, are reviewed. Nanoparticles (TiO2, SnO2, CdS) and nanorods (TiO2) with well defined dimensions were suspended in appropriate solvents (distilled water, toluene) with low concentration (1wt% or less). The solutions were flash frozen at the liquid nitrogen temperature to form the targets to be laser irradiated. The MAPLE process allowed a successful transfer from the target to rough and flat substrates, preserving the starting composition and crystalline phase of the nanostructures in a wide range of experimental conditions. In contrast, a careful choice of the laser fluence is mandatory to avoid shape modifications. Growth of metal nanoparticles with a low dispersion in size was also obtained by the MAPLE technique, starting from target solutions of a metallorganic element (AcPd) diluted in different solvents (acetone, diethyl ether). It seems that selecting the solvent with appropriate values of viscosity and boiling temperatures, it is possible to modulate the nanoparticles size. Most of the deposited nanostructured films were tested as sensing elements for gas sensors

    Optical analysis of Cr-doped ITO films deposited by double-target laser ablation

    No full text
    We investigate the optical properties of ITO and Cr-doped ITO films deposited at room temperature by pulsed laser deposition onto amorphous SiO2 substrates. Our analysis approach is based on the Tauc's plot method applied to the absorption coefficient estimated by a route realistically describing the film structural features and including the contribution of the non-measurable film–substrate interface. Going beyond the conventional application of the Tauc's plot method, we quote two different transition energies for ITO and Cr-doped ITO and discuss their origin in the framework of a band-structure picture as a function of film thickness, Cr changes of the host ITO dispersion and Cr-doping content. In contrast to the conventional optical ITO description, we account for the existence of direct dipole forbidden transitions between the ITO fundamental band edges, involving different electronic and optical band gaps. Our results and discussion demonstrate that disregarding this theoretically established picture, as occurs in the experimental literature, would lead to conclusions inconsistent with the Cr-induced band occupation and effects on ITO dispersions. Preliminary optical (based on transmittance and reflectance spectra as well as band-tailing effects), electrical and structural inspection of the samples are also considered to check reliability and consistency of our discussion
    • 

    corecore