114 research outputs found

    A prova de exercício cárdio-pulmonar e o prognóstico cirúrgico do cancro do pulmão

    Get PDF
    Resumo: Os autores procuram dar mais um contributo para a avaliação pré-operatória dos doentes com carcinoma de não pequenas células que vão ser sujeitos a cirurgia de ressecção pulmonar.Trata-se de um estudo prospectivo onde foi avaliado o resultado da cirurgia em termos de complicações ocorridas nos 30 dias a seguir à operação. Os autores definiram cada uma das complicações (óbito, enfarte do miocárdio, insuficiências respiratória, cardíaca e renal, embolia pulmonar, pneumonia e septicemia) e ainda analisaram 3 dessas complicações em separado (óbito, enfarte do miocárdio e insuficiência respiratória), as quais designaram por âfraco resultadoâ.Antes da cirurgia, foram avaliados 99 doentes (34 pneumectomias, 56 lobectomias, 6 bilobectomias e 3 ressecções atípicas) com espirometria (FEV1 em litros) e consumo de oxigénio no exercício máximo (VO2peak). Só 26 doentes tinham valores funcionais considerados borderline (FEV1 < 1,5 litros para lobectomia e < 2,0 litros para pneumectomia). Nos resultados apresentados observámos os seguintes valores médios: FEV1=2,06 litros; FEV1=80,4% do valor teórico; VO2peak=18,8 ml/kg/min ou 88,3% do valor teórico. Só existiram 4 óbitos (4%) e 21 doentes tiveram uma ou mais das complicações referenciadas.Os autores não encontraram relação significativa entre as complicações pós-operatórias e o FEV1 em litros. Verificaram ainda que o VO2peak em percentagem do valor teórico previa melhor um âfraco resultadoâ do que o mesmo parâmetro em valor absoluto.Em relação aos óbitos, um dos doentes tinha sido submetido a quimioterapia, o que dificultou a avaliação do desfecho. Nos restantes 3 óbitos, todos os doentes tinham um VO2peak < 62% do valor teórico. Dois dos 3 doentes com VO2peak < 50% tiveram um âfraco resultadoâ. Com VO2peak > 75% só 3 em 20 doentes é que tiveram um âfraco resultadoâ.Apesar de reconhecerem a necessidade de mais e maiores estudos, os autores concluem que VO2peak é importante para prever complicações como óbito, enfarte do miocárdio ou insuficiência respiratória, principalmente se é referido em percentagem do valor teórico. O limite âseguroâ situar-se-ia entre 50 e 60% do valor previsto

    Mind the Gap: Hospitalizations from Multiple Sources in a Longitudinal Study

    Get PDF
    Background Medicare claims and prospective studies with self-reported utilization are important sources of hospitalization data for epidemiologic and outcomes research. Objectives To assess the concordance of Medicare claims merged with interview-based surveillance data to determine factors associated with source completeness. Methods The Atherosclerosis Risk in Communities (ARIC) study recruited 15,792 cohort participants aged 45 to 64 years in the period 1987 to 1989 from four communities. Hospitalization records obtained through cohort report and hospital record abstraction were matched to Medicare inpatient records (MedPAR) from 2006 to 2011. Factors associated with concordance were assessed graphically and using multinomial logit regression. Results Among fee-for-service enrollees, MedPAR and ARIC hospitalizations matched approximately 67% of the time. For Medicare Advantage enrollees, completeness increased after initiation of hospital financial incentives in 2008 to submit shadow bills for Medicare Advantage enrollees. Concordance varied by geographic site, age, veteran status, proximity to death, study attrition, and whether hospitalizations were within ARIC catchment areas. Conclusions ARIC and MedPAR records had good concordance among fee-for-service enrollees, but many hospitalizations were available from only one source. MedPAR hospital records may be missing for veterans or observation stays. Maintaining study participation increases stay completeness, but new sources such as electronic health records may be more efficient than surveillance for mobile elderly populations

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Deep Convective Microphysics Experiment (DCMEX) coordinated aircraft and ground observations: microphysics, aerosol, and dynamics during cumulonimbus development

    Get PDF
    Cloud feedbacks associated with deep convective anvils remain highly uncertain. In part, this uncertainty arises from a lack of understanding of how microphysical processes influence the cloud radiative effect. In particular, climate models have a poor representation of microphysics processes, thereby encouraging the collection and study of observation data to enable better representation of these processes in models. As such, the Deep Convective Microphysics Experiment (DCMEX) undertook an in situ aircraft and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar, thermodynamics, dynamics, electric fields, and weather. This paper introduces the potential data user to DCMEX observational campaign characteristics, relevant instrument details, and references to more detailed instrument descriptions. Also included is information on the structure and important files in the dataset in order to aid the accessibility of the dataset to new users. Our overview of the campaign cases illustrates the complementary operational observations available and demonstrates the breadth of the campaign cases observed. During the campaign, a wide selection of environmental conditions occurred, ranging from dry, northerly air masses with low wind shear to moist, southerly air masses with high wind shear. This provided a wide range of different convective growth situations. Of 19 flight days, only 2 d lacked the formation of convective cloud. The dataset presented (https://doi.org/10.5285/B1211AD185E24B488D41DD98F957506C; Facility for Airborne Atmospheric Measurements et al., 2024) will help establish a new understanding of processes on the smallest cloud- and aerosol-particle scales and, once combined with operational satellite observations and modelling, can support efforts to reduce the uncertainty of anvil cloud radiative impacts on climate scales

    Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules : the SPUtNIk diagnostic accuracy study and economic modelling

    Get PDF
    Background Current pathways recommend positron emission tomography–computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach. Objectives To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography–computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies. Design Multicentre comparative accuracy trial. Setting Secondary or tertiary outpatient settings at 16 hospitals in the UK. Participants Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included. Interventions Baseline positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography with 2 years’ follow-up. Main outcome measures Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography. Results A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography–computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography–computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography–computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51). Limitations The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. Conclusions Findings from this research indicate that positron emission tomography–computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography–dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a ‘watch and wait’ policy may be an approach to consider. Future work Integration of the dynamic contrast-enhanced component into the positron emission tomography–computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol. Study registration This study is registered as PROSPERO CRD42018112215 and CRD42019124299, and the trial is registered as ISRCTN30784948 and ClinicalTrials.gov NCT02013063

    The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    Get PDF
    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 &lt; z &lt; 0.092, a large mass range (7.6 &lt; logM*/M⊙ &lt; 11.6), and star formation rates of ~10-4 to ~101M⊙ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s-1) around Ha. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central

    Comparative Accuracy and Cost-Effectiveness of Dynamic Contrast Enhanced Computed Tomography and Positron Emission Tomography in the Characterisation of Solitary Pulmonary Nodules

    Get PDF
    Abstract Introduction: Dynamic contrast-enhanced computed tomography (DCE-CT) and Positron Emission Tomography/Computed Tomography (PET/CT) have a high reported accuracy for the diagnosis of malignancy in solitary pulmonary nodules. The aim of this study was to compare the accuracy and cost-effectiveness of these. Methods: In this prospective multicentre trial, 380 participants with a solitary pulmonary nodule (8-30mm) and no recent history of malignancy underwent DCE-CT and PET/CT. All patients underwent either biopsy with histological diagnosis or completed CT follow-up. Primary outcome measures were sensitivity, specificity, and overall diagnostic accuracy for PET/CT and DCE-CT. Costs and cost-effectiveness were estimated from a healthcare provider perspective using a decision-model. Results: 312 participants (47% female, 68.1±9.0 years) completed the study, with 61% rate of malignancy at 2 years. The sensitivity, specificity, positive predictive value and negative predictive values for DCE-CT were 95.3% [95% CI 91.3;97.5], 29.8% [95% CI 22.3;38.4], 68.2% [95% CI 62.4%;73.5%] and 80.0% [95% CI 66.2;89.1] respectively, and for PET/CT were 79.1% [95% CI 72.7;84.2], 81.8% [95% CI 74.0;87.7], 87.3%[95% CI 81.5;91.5) and 71·2% [95% CI 63.2;78.1]. The area under the receiver operator characteristic curve (AUROC) for DCE-CT and PET/CT was 0.62 [95%CI 0.58;0.67] and 0.80 [95%CI 0.76;0.85] respectively (p<0.001). Combined results significantly increased diagnostic accuracy over PET/CT alone (AUROC=0.90 [95%CI 0.86;0.93], p<0.001). DCE-CT was preferred when the willingness to pay per incremental cost per correctly treated malignancy was below £9000. Above £15500 a combined approach was preferred. Conclusions: PET/CT has a superior diagnostic accuracy to DCE-CT for the diagnosis of solitary pulmonary nodules. Combining both techniques improves the diagnostic accuracy over either test alone and could be cost-effective. (Clinical trials.gov - NCT02013063)

    The SAMI Galaxy Survey: The third and final data release

    Get PDF
    We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3, we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370-570 nm) and red (630-740 nm) optical wavelength ranges at spectral resolving power of R = 1808 and 4304, respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parametrized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics Data Central
    corecore