53 research outputs found

    Model dependence of single-energy fits to pion photoproduction data

    Full text link
    Model dependence of multipole analysis has been explored through energy-dependent and single-energy fits to pion photoproduction data. The MAID energy-dependent solution has been used as input for an event generator producing realistic pseudo data. These were fitted using the SAID parametrization approach to determine single-energy and energy-dependent solutions over a range of lab photon energies from 200 to 1200 MeV. The resulting solutions were found to be consistent with the input amplitudes from MAID. Fits with a χ\chi-squared per datum of unity or less were generally achieved. We discuss energy regions where consistent results are expected, and explore the sensitivity of fits to the number of included single- and double-polarization observables. The influence of Watson's theorem is examined in detail.Comment: 12 pages, 8 figure

    Transverse Phase Locking for Vortex Motion in Square and Triangular Pinning Arrays

    Full text link
    We analyze transverse phase locking for vortex motion in a superconductor with a longitudinal DC drive and a transverse AC drive. For both square and triangular arrays we observe a variety of fractional phase locking steps in the velocity versus DC drive which correspond to stable vortex orbits. The locking steps are more pronounced for the triangular arrays which is due to the fact that the vortex motion has a periodic transverse velocity component even for zero transverse AC drive. All the steps increase monotonically in width with AC amplitude. We confirm that the width of some fractional steps in the square arrays scales as the square of the AC driving amplitude. In addition we demonstrate scaling in the velocity versus applied DC driving curves at depinning and on the main step, similar to that seen for phase locking in charge-density wave systems. The phase locking steps are most prominent for commensurate vortex fillings where the interstitial vortices form symmetrical ground states. For increasing temperature, the fractional steps are washed out very quickly, while the main step gains a linear component and disappears at melting. For triangular pinning arrays we again observe transverse phase locking, with the main and several of the fractional step widths scaling linearly with AC amplitude.Comment: 10 pages, 14 postscript figure

    Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning

    Full text link
    We study vortex states and dynamics in 2D superconductors with periodic pinning at fractional sub-matching fields using numerical simulations. For square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4 filling fractions while only partially ordered states form at other filling fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments. For triangular pinning arrays we observe matching effects at filling fractions of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular pinning arrays we also find that, for certian sub-matching fillings, vortex configurations depend on pinning strength. For weak pinning, ordering in which a portion of the vortices are positioned between pinning sites can occur. Depinning of the vortices at the matching fields, where the vortices are ordered, is elastic while at the incommensurate fields the motion is plastic. At the incommensurate fields, as the applied driving force is increased, there can be a transition to elastic flow where the vortices move along the pinning sites in 1D channels and a reordering transition to a triangular or distorted triangular lattice. We also discuss the current-voltage curves and how they relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure

    Pion photoproduction on the nucleon in the quark model

    Get PDF
    We present a detailed quark-model study of pion photoproduction within the effective Lagrangian approach. Cross sections and single-polarization observables are investigated for the four charge channels, γpπ+n\gamma p\to \pi^+ n, γnπp\gamma n\to \pi^- p, γpπ0p\gamma p\to \pi^0 p, and γnπ0n\gamma n\to \pi^0 n. Leaving the πNΔ\pi N\Delta coupling strength to be a free parameter, we obtain a reasonably consistent description of these four channels from threshold to the first resonance region. Within this effective Lagrangian approach, strongly constrainted by the quark model, we consider the issue of double-counting which may occur if additional {\it t}-channel contributions are included.Comment: Revtex, 35 pages, 16 eps figures; version to appear on PR

    Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    Full text link
    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partial-wave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of PP-matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G-matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determine the natural scale of the density for a possible phase transition into the MQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernova models. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.Comment: 57 pages, 22 figures, 7 tables; RevTeX 4; submitted to Phys. Atom. Nuc

    Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virus-resistant tomato

    No full text
    At present, the so-called "substantial equivalence" is the only widely accepted criterion for deciding whether or not a transgenic food is, from an alimentary point of view, to be considered totally correspondent to the "traditional" one from which it derives. Although never exactly defined, it deals with a comparison between the chemical composition of the two foods. A more in-depth analysis can be performed by one of the most suitable methods that allows for the simultaneous screening of many components without prior identification, the analysis of the proteome. As a model for testing this kind of approach, we compared protein expression of two types of tomato plants, having the same genetic background, except for a virus resistance trait introduced by genetic engineering. When proteins extracted from seedlings of the two types were analyzed by two-dimensional electrophoresis, no significant differences, either qualitative or quantitative, were detected, indicating that in this case the expression of major proteins was unmodified by the genetic manipulation. Fifteen proteins were identified by peptide mass fingerprinting
    corecore