14 research outputs found

    A Life of Fun Playing with Solar Magnetic Fields (Special Historical Review)

    Full text link

    Topological constraints on magnetic relaxation

    No full text
    The final state of turbulent magnetic relaxation in a reversed field pinch is well explained by Taylor's hypothesis. However, recent resistive-magnetohydrodynamic simulations of the relaxation of braided solar coronal loops have led to relaxed fields far from the Taylor state, despite the conservation of helicity. We point out the existence of an additional topological invariant in any flux tube with non-zero field: the topological degree of the field line mapping. We conjecture that this constrains the relaxation, explaining why only one of three example simulations reaches the Taylor state.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter

    Heating of Braided Coronal Loops

    Get PDF
    Aims. We investigate the relaxation of braided magnetic loops in order to find out how the type of braiding via footpoint motions affects resultant heating of the loop. Methods. Two magnetic loops, braided in different ways, are used as initial conditions in resistive MHD simulations and their subsequent evolution is studied. Results. The fields both undergo a resistive relaxation in which current sheets form and fragment and the system evolves towards a state of lower energy. In one case this relaxation is very efficient with current sheets filling the volume and homogeneous heating of the loop occurring. In the other case fewer current sheets develop, less magnetic energy is released in the process and a patchy heating of the loop results. The two cases, although very similar in their setup, can be distinguished by the mixing properties of the photospheric driver. The mixing can be measured by the topological entropy of the plasma flow, an observable quantity

    Dynamic non-null magnetic reconnection in three dimensions II: composite solutions

    No full text
    In this series of papers we examine magnetic reconnection in a domain where the magnetic field does not vanish and the non-ideal region is localised in space. In a previous paper we presented a technique for obtaining analytical solutions to the stationary resistive MHD equations in such a situation and examined specific examples of non-ideal reconnective solutions. Here we further develop the model, noting that certain ideal solutions may be superimposed onto the fundamental non-ideal solutions and examining the effect of imposing various such flows. Significant implications are found for the evolution of magnetic flux in the reconnection process. It is shown that, in contrast to the two-dimensional case, in three-dimensions there is a very wide variety of physically different steady reconnection solutions.Comment: 20 pages, 8 figure
    corecore