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Abstract
This paper is the third in a series of papers working towards the construction of a
realistic, evolving, non-linear force-free coronal field model for the solar magnetic
carpet. Here, we present preliminary results of 3D time-dependent simulations
of the small-scale coronal field of the magnetic carpet. Four simulations are
considered, each with the same evolving photospheric boundary condition: a 48
hr time series of synthetic magnetograms produced from the model of Meyer et
al. (2011). Three simulations include a uniform, overlying coronal magnetic field
of differing strength, the fourth simulation includes no overlying field. The build-
up, storage and dissipation of magnetic energy within the simulations is studied.
In particular, we study their dependence upon the evolution of the photospheric
magnetic field and the strength of the overlying coronal field. We also consider
where energy is stored and dissipated within the coronal field. The free magnetic
energy built up is found to be more than sufficient to power small-scale, transient
phenomena such as nanoflares and X-ray bright points, with the bulk of the free
energy found to be stored low down, between 0.5−0.8 Mm. The energy dissipated
is presently found to be too small to account for the heating of the entire quiet
Sun corona. However, the form and location of energy dissipation regions are in
qualitative agreement with what is observed on small scales on the Sun. Future
MHD modelling using the same synthetic magnetograms may lead to a higher
energy release.
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1. Introduction

The small-scale photospheric magnetic field of the quiet Sun, the magnetic car-
pet, is complex and constantly evolving. This evolution is due to underlying
photospheric flows produced by convection on many scales (e.g. granulation and
supergranulation, Leighton, Noyes, and Simon (1962), Wang and Zirin (1989),
Schrijver, Hagenaar, and Title (1997), Rieutord and Rincon (2010)) and the
flux evolution processes of emergence, cancellation, coalescence and fragmenta-
tion. Small-scale magnetic features classified as ephemeral regions (Harvey and
Martin, 1973; Harvey, 1993; Hagenaar, DeRosa, and Schrijver, 2008; Schrijver,
2010), internetwork features (Livingston and Harvey, 1975; Wang et al., 1996; de
Wijn et al., 2008; Zhou et al., 2010) and network features (Simon and Leighton,
1964; Zirin, 1985; Martin, 1984; Martin, 1988) continually interact with one an-
other, resulting in a photospheric recycle time of just 1−2 hr (hours) (Hagenaar,
DeRosa, and Schrijver, 2008). This is the time taken for all flux within the quiet
Sun photosphere to be replaced. Since magnetic fields from the magnetic carpet
extend up into the solar chromosphere and lower corona, it is expected that
the quiet Sun corona is also highly dynamic. Complex interactions of magnetic
features on the photosphere may result in significant heating of the corona,
for example through braiding and reconnection of magnetic field lines (e.g.
Galsgaard and Nordlund (1996), Parnell and Galsgaard (2004), Haynes et al.
(2007) Rappazzo et al. (2008), Berger and Asgari-Targhi (2009), Wilmot-Smith,
Hornig, and Priest (2009), Pontin et al. (2011)). Therefore, it is of interest to
simulate the small-scale coronal field resulting from the evolution of the solar
magnetic carpet.

Previous magnetic carpet coronal field models using extrapolation methods
have studied, for example, flux topology and connectivity (Schrijver and Title,
2002; Close et al., 2003); the number density and locations of coronal null points
(Schrijver and Title, 2002; Régnier, Parnell, and Haynes, 2008; Longcope and
Parnell, 2009); coronal remap times (Close et al., 2004; Cranmer and van Balle-
gooijen, 2010); and whether the solar wind can be driven by reconnection in the
magnetic carpet (Cranmer and van Ballegooijen, 2010). However, each of these
studies considered only potential field extrapolations of the small-scale coronal
field.

Within this paper, we present preliminary results of 3D simulations of the
network-scale coronal field of the magnetic carpet. In contrast to the models
described above, which produce independent potential field extrapolations, we
model a continuous evolution of a non-linear force-free coronal field. A non-linear
force-free field satisfies the conditions∇·B = 0 and∇×B = αB, where α = α(r)
is a scalar function of position (but constant along a given field line) describing
the twist of the field. This approximation is a step up in complexity from a
potential field as it allows for the existence of electric currents and free magnetic
energy. In Meyer et al. (2011) (hereafter Paper I) we presented a realistic model
for the photospheric evolution of the magnetic carpet, that reproduced many
observational properties. Synthetic magnetograms produced from this model will
provide the photospheric boundary condition to drive the evolution of the full
3D coronal field. The coronal field is evolved through a series of quasi-static, non-
linear force-free states in response to the evolution of the photospheric magnetic
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field, using a magnetofrictional technique that is described in Meyer, Mackay,
and van Ballegooijen (2012) (hereafter Paper II). There are several advantages
to using synthetic magnetograms as opposed to actual observed data: (i) The
total magnetic flux within the synthetic magnetograms is always known − there
is no noise or instrumental limitations. (ii) We have complete control over the
photospheric evolution − magnetic features do not drift into or out of the field
of view, which is unavoidable in real magnetograms. (iii) The synthetic magne-
tograms are always in flux balance (total positive flux = total negative flux). This
is a requirement for the coronal model due to our set-up. (iv) We know exactly
where and when each of the processes of emergence, cancellation, coalescence
and fragmentation occur within the synthetic magnetograms, as well as the exact
flux involved in each event. Many feature tracking techniques exist to follow the
evolution of magnetic features in real magnetogram data, e.g. DeForest et al.
(2007). However, these are limited by factors such as spatial resolution and time
cadence. In a future study, we will consider in detail how various photospheric
events in our synthetic magnetograms affect the evolution of the coronal field.

In this paper we consider four simulations in total, each with the same pho-
tospheric boundary condition: a 48 hr set of synthetic magnetograms. Three
of the simulations have a uniform, overlying coronal magnetic field (of varying
strength) which points in the positive x−direction; this simulates the influence
of larger scale magnetic features, such as exist on the Sun, especially during solar
maximum. The fourth simulation has no overlying field and thus represents a
very quiet region of the Sun, such as may be found during solar minimum.
We consider the magnetic energy both stored and dissipated within the coronal
volume, along with the square of the current density, j2. Some of the properties
of these quantities that we consider are: how they evolve in time, where they
are located spatially with respect to the underlying photospheric magnetic field,
and the effect of varying the strength of the overlying coronal magnetic field.

Section 2 describes the lower boundary condition and the set-up of the 3D
simulations. Section 3 provides the results, while Section 4 gives a discussion
and conclusions.

2. Lower Boundary Condition and Set-Up

We choose the most realistic simulation from Paper I to provide the lower
boundary condition for 3D modelling. This simulation, which covers an area
of 50 × 50 Mm2, is of length 250 hr with a cadence of 1 min, and has a flux
emergence range of φbp = 4× 1016 − 1019 Mx. Flux emergence is determined by
the probability distribution of Thornton and Parnell (2011), giving an emergence
rate of 1.2×10−3 Mx cm−2 s−1. The smallest magnetic features that occur within
this simulation have a flux of 1016 Mx. The magnetograms are all in flux balance
and are periodic in the x− and y−directions. For full details of the simulation,
see Paper I. For the 3D simulations, we select a 48 hr window of the synthetic
magnetograms from the full 250 hr set, as explained below, providing a series of
2881 synthetic magnetograms.

Figure 1(a) shows the total absolute flux for the 48 hr section of the 2D
simulation that is used for 3D modelling. The curve oscillates about a mean
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(a) (b)

Figure 1. (a) Total absolute flux through the photosphere as a function of time for the 48
hr series of magnetograms used in our 3D models. (b) Synthetic magnetogram at t = 120
hr, composed of 1499 individual magnetic elements. Ten contour levels of positive (red) and
negative (blue) magnetic field are shown, with absolute values spaced evenly between 7.5 G
and 142.5 G.

value of 1.19× 1020 Mx, with a standard deviation of 5.79× 1018 Mx, or 4.9%,
indicating that the 2D simulation is in a steady state at this time.

Figures 1(b) shows an example of a synthetic magnetogram, taken at t = 120
hr, where red and blue contours represent positive and negative magnetic field,
respectively. A movie showing the photospheric evolution of Bz for the first 2 hr
is available (magnet48 bz 2hr.mpg). The magnetic elements are mainly located
around the boundaries of the supergranules, forming the magnetic network (an
image of the simulated supergranules can be seen in Figure 3(b) of Paper I).
The supergranular flow profile is not time-evolving, so the general shape of
the magnetic network does not vary much. Despite this limitation, the exact
distribution of magnetic elements does change significantly throughout the 48
hr period. In Paper I it was determined that the photospheric recycle time for
this series of synthetic magnetograms was 1.48 hr, in excellent agreement with
Hagenaar, DeRosa, and Schrijver (2008)’s recycle time of 1−2 hr. Therefore the
synthetic magnetogram series realistically simulates the dynamic nature of the
magnetic carpet, making it a suitable lower boundary condition for 3D modelling.

2.1. Coronal Magnetic Field Evolution

We now discuss the set-up of the 3D model. We choose a numerical box of
size 50 × 50 × 25 Mm3, composed of 512 × 512 × 256 grid cells. The box is
periodic in the x− and y−directions and closed at the top. Since magnetic flux
may only enter and exit the box through the lower boundary, the synthetic
magnetograms are required to be in complete flux balance. The periodicity of the
side boundaries gives the effect of the region being surrounded by similar regions
of small-scale magnetic carpet features. The initial condition for each simulation
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is a potential field extrapolated from the first magnetogram. We subsequently
evolve the coronal magnetic field in response to photospheric boundary motions
using a magnetofrictional relaxation technique (Yang, Sturrock, and Antiochos,
1986; Mackay and van Ballegooijen, 2006; Yeates, Mackay, and van Ballegooijen,
2008; Mackay and van Ballegooijen, 2009; Mackay, Green, and van Ballegooijen,
2011; Meyer, Mackay, and van Ballegooijen, 2012). The magnetofrictional tech-
nique produces a continuous evolution of the coronal magnetic field, so that a
‘memory’ of flux connectivity and electric current systems is maintained from
one step to the next. The coronal field induction equation is given by

∂A
∂t

= v ×B + ε (1)

where B = ∇×A is the magnetic field and A its the associated vector potential.
The plasma velocity, v, is given by

v =
1
ν

j×B
B2

, (2)

where ν is the coefficient of friction, 1
ν = 8 × 104 km2 s−1, and j = ∇ × B.

This velocity describes the relaxation of the coronal magnetic field towards a
non-linear force-free state in response to perturbations, and takes advantage of
the fact that the Lorentz force, j×B, is the dominant force within the corona.
The term ε within Equation 1 represents hyperdiffusion (e.g. Boozer (1986), van
Ballegooijen and Cranmer (2008)) and is chosen to be of the form

ε =
B
B2
∇ · (η4B2∇α), (3)

where, η4 = 7.6× 105 km4 s−1 and α is the scalar coefficient from the definition
of a non-linear force-free field such that ∇×B = αB. It is calculated as

α =
j ·B
B2

. (4)

Hyperdiffusion aids the stability of the code by smoothing gradients in α and
allows reconnection to occur. It acts to reduce the magnetic field to a linear
force-free state, however the time scales of the present simulations are too short
for such a state to be reached.

The evolution of the photospheric boundary perturbs the coronal field, which
responds through Equations 1 and 2. This continual stressing and relaxing of
the coronal field, in response to the lower boundary motions, evolves the field
through a series of quasi-static, non-linear force-free equilibria.

2.2. Lower Boundary Treatment

The lower boundary treatment is the same as is described in Paper II, where
a full description may be found. Since Equation 1 is specified in terms of the
vector potential A, the lower boundary is also required in terms of A. A linear
interpolation of the Ax and Ay corresponding to Bz at z = 0 Mm is carried
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out between each synthetic magnetogram. Bz at z = 0 Mm is analytically
specified at each time step, rather than advected numerically (see Paper I). This
avoids certain undesirable numerical effects such as numerical overshoot or pile-
up at cancellation sites. Between each analytical specification of the photospheric
magnetic field, 500 interpolation steps are taken, corresponding to 0.12 s each.
The magnetofrictional technique is applied during each of these interpolation
steps so that the relaxation is gradual.

In total, four simulations are run, each with the same photospheric boundary
evolution. Three of the simulations have an overlying, uniform magnetic field of
strength B0 = 1 G, 3 G or 10 G, which points in the positive x−direction. The
fourth simulation has no overlying field. For the cases with a uniform overlying
field, we add this field to the initial potential field as follows: The potential field
is computed in terms of the vector potential A. We add the term B0(zmax − z)
to Ay throughout the volume, where B0 is the strength of the overlying field
and z is the height above the photosphere. Then, when we compute B = ∇×A,
since the x−component is

Bx =
∂Az
∂y
− ∂Ay

∂z
,

this has the effect of adding a constant B0 to Bx throughout the volume. We
also add a contribution B0zmax to the Ay component of all of the synthetic
magnetograms that provide the lower boundary condition.

West et al. (2011) investigated an EIT wave during solar minimum and es-
timated the strength of the quiet Sun coronal magnetic field to be 0.7± 0.7 G.
A variety of authors have attempted to estimate the strength of active region
coronal loops using coronal seismology, with values obtained anywhere in the
range 3−90 G (Nakariakov and Ofman, 2001; Aschwanden et al., 2002; Verwichte
et al., 2004; Van Doorsselaere et al., 2008; Wang, Inees, and Qiu, 2007), although
De Moortel and Pascoe (2009) stress that coronal seismology does not necessarily
reliably determine the strength of the magnetic field. Indeed, they find that when
they apply the method of Nakariakov and Ofman (2001) to their 3D model of
a coronal loop, it overestimates the strength of the magnetic field by 50 %.
However, our no overlying field and 1 G overlying field cases can be taken to
represent the quiet Sun during solar minimum, while the 3 G and 10 G cases
represent a quiet region of the Sun influenced by nearby active regions during
solar maximum. The following sections give preliminary results of these 3D non-
potential simulations. In Section 3, we briefly discuss field line connectivity
between magnetic elements. Section 3.1 focuses on the free magnetic energy,
Section 3.2 the square of the current density (j2) and Section 3.3 on the energy
dissipated. For both energies, we consider the time evolution of the quantity
integrated over the whole volume, and also how it is affected by varying the
overlying field strength. We then consider where the energy is located spatially.

3. Results

Figures 2(a) and (b) show images from the simulation with no overlying field,
(c) and (d) the 3 G overlying field simulation. The images on the left are both
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(a) (b)

(c) (d)

Figure 2. Coronal field images for the 3D simulation with (a) and (b) no overlying field, (c)
and (d) a 3 G overlying field. On the base, contours of positive (red) and negative (green)
magnetic field are plotted. A selection of coronal magnetic field lines are shown in each case
reaching maximum heights of < 2.5 Mm (dark blue), 2.5−5 Mm (magenta) and > 5 Mm (pale
blue). The images are taken at (a) and (c) t = 128 hr, (b) and (d) t = 168 hr.

taken at t = 128 hr and the images on the right are shown at t = 168 hr. In all
four images, contours of Bz at z = 0 Mm are plotted on the base (red=positive,
green=negative). A selection of magnetic field lines are also over-plotted in each
case, where dark blue, magenta and pale blue field lines reach a maximum height
of < 2.5 Mm, 2.5− 5 Mm and > 5 Mm respectively. For comparison, field lines
in Figures 2(c) and (d) are plotted from the same photospheric starting points
as field lines in (a) and (b) respectively. As expected, we find that connections
between magnetic elements within the simulation with no overlying field may
reach much greater heights than those in the 3 G simulation, as the overlying
field suppresses the extension of the magnetic elements’ field into the corona.
Also, the connectivity is quite different between the images at t = 128 hr and
t = 168 hr, showing that the coronal field has changed significantly during this
interval, as expected. The images here are intended only to give an indication of
what the connectivity is like between the magnetic elements. A more in depth
analysis will be carried out in future.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. (a) Free magnetic energy as a function of time for the 3D simulations with no
overlying field (green), 1 G (black), 3 G (blue) and 10 G (red) overlying field. (b) Total free
magnetic energy as a function of height for the simulation with a 3 G overlying field. The curves
show the free energy at t = 128 hr (black), t = 136 hr (blue), t = 144 hr (red), t = 152 hr
(green), t = 160 hr (yellow) and t = 168 hr (purple). (c) and (d) Free magnetic energy density
integrated along the LOS from above (x − y plane), for the 3 G overlying field simulation,
at (c) t = 128 hr and (d) t = 168 hr. White denotes regions where the free energy density
is positive and black where it’s negative, saturated at ±1.9 × 1022 ergs. Positive (red) and
negative (green) contours of Bz at z = 0 Mm are over-plotted at levels of ±[7, 13, 27, 53, 106]
G. (e) and (f) Free energy density integrated along the LOS, viewed from the side (x−z plane)
saturated at ±4.8× 1022 ergs, at (e) t = 128 hr and (f) t = 168 hr.
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Table 1. Mean and maximum values of free magnetic energy for each
simulation.

Simulation Mean Free Magnetic Maximum Free Magnetic

(B0) Energy (×107 ergs cm−2) Energy (×107 ergs cm−2)

0 G 4.53 6.51

1 G 4.79 6.85

3 G 5.85 8.40

10 G 8.38 11.67

3.1. Free Magnetic Energy

The presence of free magnetic energy within our 3D model is a significant dif-
ference to the potential field (minimum energy) models of the magnetic carpet
coronal field discussed in the introduction. Figure 3(a) shows a plot of the free
magnetic energy (ergs) as a function of time, defined as

Ef(t) =
∫
V

|Bnl|2 − |Bp|2

8π
dV, (5)

where Bnl is the non-linear force-free magnetic field and Bp is the magnetic field
of the corresponding potential field. Results are shown for the no overlying field
(green), 1 G (black), 3 G (blue) and 10 G (red) simulations. For each simulation,
the free energy initially increases rapidly as the coronal field diverges from a
potential state due to surface motions. For the no overlying field and 1 G cases,
the free energy then levels off and oscillates around a mean value of 1.13× 1027

ergs and 1.20 × 1027 ergs, respectively, with standard deviations of 1.52 × 1026

ergs and 1.74× 1026 ergs. For the 3 G and 10 G cases, the free energy also levels
off to a lesser extent, but is less steady, with mean values of 1.46 × 1027 ergs
and 2.10× 1027 ergs and standard deviations of 2.84× 1026 ergs and 4.06× 1026

ergs respectively. The mean and maximum values of free energy per unit area
for each simulation are given in Table 1. The trend is that a stronger overlying
field leads to a greater build-up of free energy. In each case, the individual peaks
in free energy differ between the simulations, however the general shape of the
curve is the same for all four overlying field strengths. Therefore the overall
behaviour of the free magnetic energy is largely dependent on the evolution of
the photospheric magnetic field, rather than the strength of the overlying coronal
field.

The variation of free energy with height is similar for all simulations, so here
we just discuss the results from the 3 G overlying field simulation. Figure 3(b)
shows plots of the free magnetic energy integrated over x and y, as a function of
height, for the simulation with a 3 G overlying field. This is computed as follows:

Ef(z) = Lz

∫ ymax

ymin

∫ xmax

xmin

|B(x, y, z)nl|2 − |B(x, y, z)p|2

8π
dxdy,
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where xmin = ymin = 0 Mm, xmax = ymax = 50 Mm and Lz = 0.098 Mm is
the length of a cell in z. The total free magnetic energy as a function of height is
shown at times spaced evenly throughout the simulations, at t = 128 hr (black),
t = 136 hr (blue), t = 144 hr (red), t = 152 hr (green), t = 160 hr (yellow) and
t = 168 hr (purple). In Figure 3(a), which shows the total free magnetic energy
as a function of time, the vertical yellow dashed lines are over-plotted on the
graph at intervals of 8 hr, indicating the times at which the lines in Figure 3(b)
are taken. In Figure 3(b), it can be seen that the ordering of the curves is not
time dependent. Once the coronal field has evolved away from its initial potential
state, the total amount of free magnetic energy within the volume depends upon
how much is both built up and stored due to surface motions. For each of the
curves in Figure 3(b), there is a peak between roughly z = 0.5 Mm and z = 0.8
Mm, indicating that this is where the majority of the free magnetic energy is
stored. The free energy then drops off rapidly after z = 1 Mm. As in Paper II, we
find that the field departs most from a potential state low down in the corona,
as this is close to where we are driving the evolution of the field by photospheric
motions. In addition, most closed connections between magnetic elements (as
opposed to connections from the magnetic elements to the overlying field) are
found to be low lying (e.g. Priest, Heyvaerts, and Title (2002), Close et al.
(2003)), and it is along these connections that free energy is stored. A movie
showing the time evolution of the free magnetic energy as a function of height
for the 3 G simulation is available (magnet48b free ht.mpg). The movie shows
that the free energy is highly dynamic and rapidly evolving. The height of the
curve is continually changing, however it can be seen that the peak in the curve
tends to remain between z = 0.5 Mm and z = 0.8 Mm.

Figures 3(c) and (d) show the free magnetic energy density,
B2

nl−B
2
p

8π , integrated
in z, in the x − y plane for the 3 G simulation at t = 128 hr and t = 168 hr,
respectively. This is computed as follows:

Ef(x, y) = A

∫ zmax

zmin

|B(x, y, z)nl|2 − |B(x, y, z)p|2

8π
dz,

where A = Lx Ly, Lx = 0.098 Mm is the length of a cell in x and Ly = 0.098
Mm is the length of a cell in y. White patches indicate where the free energy
density is positive, i.e. where B2

nl > B2
p, black where the free energy density is

negative, B2
nl < B2

p. Note that the total free magnetic energy integrated over the
volume is always positive (see Figure 3(a)). Positive (red) and negative (green)
contours of Bz at z = 0 Mm are over-plotted. We define free magnetic energy to
be ‘stored’ at locations where the line-of-sight (LOS) integrated free magnetic
energy density is positive. From these images, it can be seen that free magnetic
energy may be stored both at the boundaries between supergranular cells and
within the cells themselves.

In Paper II, it was found that when the evolution of the magnetic elements
disturbed a larger volume of the overlying field, a greater amount of free energy
was built up. It was also found that closed connections between the magnetic
elements are required, along which the free energy may be stored. In agreement
with Paper II, we find that free energy is stored mainly in two locations. Firstly,
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we see that white patches are located around supergranule cell boundaries where
the magnetic network is formed. Large numbers of magnetic elements are swept
to these locations by supergranular flows, and continually interact with one
another, cancelling, coalescing and fragmenting. This continual evolution of the
magnetic elements results in a large build up of free energy, which may then
be stored along the multiple connections that form between nearby magnetic
elements that lie in the network. The second location where we see free energy
stored is along long-lived, far-reaching, twisted connections between magnetic
elements. Such connections may stretch across supergranule cells, between mag-
netic elements located at opposite boundaries (examples of this will be given
later, in Figure 4). Longer connections will clearly disturb a larger volume of
the surrounding coronal magnetic field, hence building up free energy. A movie
showing the free magnetic energy density, integrated in z, in the x− y plane is
available (magnet48b free xy bz.mpg), with contours of Bz at z = 0 Mm over-
plotted. Within the movie, one can see that regions of positive free energy density
are continually evolving in response to photospheric motions. In particular, occa-
sional large patches of positive free energy density develop around the magnetic
network. One can also see long-lived bands of positive free magnetic energy
density stretching across supergranules, between magnetic elements. Many of
the regions of free magnetic energy density last for several hours. For readers
unable to view the movie, six still images spaced 1 hr apart are included in
Appendix A (Figure 8), to give an impression of the time-scale of the evolution.

Figures 3(e) and (f) show x − z plane images of the LOS integrated free
magnetic energy density, saturated at ±4.8 × 1022 ergs, for the 3 G simulation
at t = 128 hr and t = 168 hr, respectively. A movie of the free magnetic energy
density in the x−z plane, integrated in y, is available (magnet48b free xz.mpg).
In both the movie and the still images, it can be seen that the free energy is
mainly located low down, with the bulk of it being below z = 3 Mm. This is
where many closed connections exist between the magnetic elements and a larger
departure of the magnetic field from a potential state is found. One can see that
the locations of positive free energy density are highly dynamic and there exist
long-lived ‘bulbs’ of positive free energy density, where it is stored within the
corona along closed connections between magnetic elements. Similar evolution
of the LOS integrated free magnetic energy density is seen in the y − z plane
and for different strengths of overlying field.

Figures 4(a) and (b) show two zoomed in sections of the x− y plane images
of the LOS integrated free energy density taken at t = 128 hr and t = 168
hr, respectively, from Figures 3(c) and (d). A selection of closed field lines has
been over-plotted in blue in each case. Figure 4(a) shows the band of positive
free energy density that can be seen lying across the lower left supergranule in
Figure 3(c), while Figure 4(b) shows the band of positive free energy density
across the lower right supergranule in Figure 3(d). In both zoomed images,
twisted magnetic field lines connect between various magnetic elements on either
side of the supergranule. The free energy is stored in these regions of complex
connections. Figure 4(c) shows an x − z plane image of free energy density
integrated in y at t = 128 hr, and is a side view of the band of positive free
energy density in Figure 4(a). Similarly, Figure 4(d) is a side view of the band of
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(a) (b)

(c) (d)

Figure 4. All images are for the 3 G simulation. (a) and (b) Free magnetic energy density
integrated in z, shown in the x−y plane. The images are white in regions where the free energy
density is positive, black where the free energy density is negative. Positive (red) and negative
(green) contours of Bz at z = 0 Mm are over-plotted at levels of ±[7, 13, 27, 53, 106] G. The
images are shown at (a) t = 128 hr and (b) t = 168 hr. (c) Free magnetic energy integrated
in y, shown in the x − z plane at t = 128 hr. (d) Free magnetic energy density integrated in
x, shown in the y − z plane at t = 168 hr. A selection of field lines are over-plotted in blue on
each image.

positive free energy density in Figure 4(b) and shows a y− z plane image of free
energy density integrated in x at t = 168 hr. For each of the cases, a complex
structure of the magnetic field can be seen.

3.2. Current Density

The square of the current density, j2, is of interest because it indicates locations
of possible Ohmic heating, j2

σ . However, it should be noted that in the present
simulations, due to the simplified form used, we do not have an energy equation.
Figures 5(a) and (b) show images in the x − y plane of j2 integrated in z, at
t = 128 hr and t = 168 hr, respectively. This is computed as follows:

Ej(x, y) =
∫ zmax

zmin

j(x, y, z)2dV.

SOLA: km_paper3_arxiv.tex; 7 March 2013; 14:56; p. 12



Coronal Modelling of Synthetic Magnetograms

(a) (b)

(c) (d)

(e) (f)

Figure 5. All images are for the 3 G simulation. For (a)-(d), darker regions correspond to
higher values. (a) and (b) Normalised j2 integrated in z, shown in the x− y plane. Contours
of positive (red) and negative (green) magnetic field at z = 0 Mm are over-plotted, at levels of
±[7, 13, 27, 53, 106] G. (c) and (d) logarithm of normalised j2 in the x−z plane at y = 25 Mm.
(e) and (f) free magnetic energy density shown in the x− z plane at y = 25 Mm, saturated at
±1.9×1020 ergs. Images in the left-hand column are shown at t = 128 hr and in the right-hand
column at t = 168 hr.

Note that the colour table has been reversed, so that darker regions correspond
to higher values of Ej(x, y). Contours of Bz at z = 0 Mm are over-plotted at the
same levels as in Figures 3(c) and (d). On comparison with the x−y plane images
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of free magnetic energy in Figures 3(c) and (d), the locations of high j2 and of
positive free magnetic energy density seem to match very well. The regions of
high j2 appear to be strongest in the magnetic network. Within a force-free field,
by definition, j×B = 0, hence j is parallel to B. This means that we can express
j as a scalar multiple of B, j = αB, where α is a scalar representing the twist of
the magnetic field with respect to the corresponding potential field. Therefore,
it makes sense that j2 is at its largest near the magnetic sources, where B is
largest. We also see fainter bands of j2 stretching across supergranules, often
in the same places as bands of positive free magnetic energy density. Again, it
makes sense for j2 to be high in such locations as free magnetic energy is built
up in regions of high non-potentiality (large |α|) which arise due to non-zero j
(= αB). The evolution of j2, integrated in z, in the x− y plane can be seen in
the movie, magnet48b j xy bz.mpg, for the 3 G simulation. Six still images from
this movie, spaced 1 hr apart, are included in Appendix A (Figure 9), to give
an impression of the evolution for those who cannot view the movie. Although
regions of j2 are often co-located with regions of positive free energy density, the
regions of j2 appear to be more rapidly evolving than those of free energy. The
spatial distribution of j2 is quite different from one hour to the next.

Figures 5(c) and (d) show images of the logarithm of j2 in the x− z plane at
y = 25 Mm, at t = 128 hr and t = 168 hr, respectively. The regions of j2 appear
to be well structured, and obviously follow the shape of the magnetic field (as j
is parallel to B). Figures 5(e) and (f) show images of the free magnetic energy
density at y = 25 Mm, shown at the same times as (c) and (d) respectively. It
can be seen that regions of positive free energy density tend to be co-located
with regions of high j2.

3.3. Energy Dissipated

In addition to the free magnetic energy stored within the system, we consider
energy that is being continually dissipated due to the relaxation processes within
the model applied. This is described by the energy dissipation term,

Q = Qfrc +Qhd =
B2

4π
ν|v|2 +

B2

4π
η4|∇α|2. (6)

The first term, Qfrc, represents energy dissipation due to magnetofriction, which
is released as the coronal magnetic field relaxes towards a force-free state (Yang,
Sturrock, and Antiochos, 1986). The second term, Qhd, represents energy dissi-
pation due to hyperdiffusion (Boozer, 1986). It has previously been interpreted
as the rate at which magnetic energy is converted into heat during the relaxation
of the magnetic field (van Ballegooijen and Cranmer, 2008). For the derivation
of Q and a full description of the terms Qfrc and Qhd, see Paper II.

Figure 6(a) shows a plot of the rate of energy dissipation per unit area, due
to magnetofriction, 1

S

∫
V
Qfrc dV , as a function of time, for the no overlying field

(green), 1 G (black), 3 G (blue) and 10 G (red) simulations. S = 2.5 × 1019

cm2 is the area of the photospheric boundary surface. It can be seen that Qfrc is
not strongly dependent on the overlying field strength. A stronger overlying field
leads to slightly higherQfrc, but the variation of values ofQfrc within each curve is
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a)−(d) Energy dissipated per unit area as a function of time for the 3D simulations
with no overlying field (green), 1 G (black), 3 G (blue) and 10 G (red) overlying field. (a) Rate

of energy dissipation due to magnetofriction, 1
S

∫
V

Qfrc dV , (b) rate of energy dissipation due

to hyperdiffusion, 1
S

∫
V

Qhd dV , and (c) total rate of energy dissipation, Eq(t). (d) Cumulative

energy dissipated as a function of time, Ed(t). (e) Rate of energy dissipation (integrated over
x and y) as a function of height for the 3 G simulation. Six curves are plotted at 50 min
intervals from t = 120.17 − 124.33 hr, the remaining six curves are plotted at 8 hr intervals
from t = 128− 168 hr. Colours span from blue to red with increasing time. (f) Total absolute
flux through surfaces of z = constant, as a function of height, at t = 168 hr.

much larger than the variation of values between the curves for different overlying
field strengths. Table 2 shows the mean and maximum values of 1

S

∫
V
Qfrc dV for
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Table 2. Mean and maximum values of Qfrc, Qhd and Q integrated
over the volume (Eq(t)), and cumulative energy dissipated for each
simulation. Typical horizontal magnetic field, Bh, and Poynting flux
order of magnitude estimate, P1/S, for each simulation.

B0 0 G 1 G 3 G 10 G

1
S

∫
V

Qfrc dV Mean 2.66 2.67 2.74 3.25

(×104 ergs cm−2 s−1) Max 4.71 4.78 4.91 5.60

1
S

∫
V

Qhd dV Mean 0.44 0.45 0.53 0.95

(×104 ergs cm−2 s−1) Max 0.58 0.62 0.77 1.47

Eq(t) Mean 3.10 3.12 3.27 4.20

(×104 ergs cm−2 s−1) Max 5.26 5.30 5.49 6.87

Typical Bh (G) 6.5 6.6 7.2 12.1

P1/S (×104 ergs cm−2 s−1) 5.96 6.05 6.60 11.09

S Ed(tmax) (×1029 ergs) 1.35 1.37 1.43 1.83

Ed(tmax) (×109 ergs cm−2) 5.43 5.47 5.73 7.31

each overlying field strength simulation. The difference in mean values between
the 0 G and 10 G cases is just 0.59 × 104 ergs cm−2 s−1. However, from the
plot in Figure 6(a), each curve has a variation of around 2.9 − 3.3 × 104 ergs
cm−2 s−1 between its maximum and minimum. Therefore, the energy dissipation
due to magnetofriction is predominantly dependent upon the evolution of the
photospheric magnetic field driving change within the coronal field.

Figure 6(b) shows the rate of energy dissipation per unit area due to hy-
perdiffusion, 1

S

∫
V
Qhd dV , as a function of time, where lines are coloured as

in Figure 6(a). Very little difference can be seen between the curves for the
no overlying field and 1 G cases. The 3 G case results in slightly higher Qhd,
while the 10 G case results in significantly higher Qhd. Also, for the 10 G case
there is a larger variation in the values of Qhd than in the no overlying field
or 1 G cases. Thus, Qhd is clearly dependent on the strength of the overlying
field. While this is the case, the general shape of all of the curves are the same,
implying that like Qfrc, Qhd is also predominantly dependent on the evolution
of the photospheric magnetic field driving changes within the coronal volume.
The mean and maximum values for 1

S

∫
V
Qhd dV for each strength of overlying

field are given in Table 2. For each case, the mean values for Qhd are 3.4 − 6.0
times smaller than the mean values for Qfrc, and the maximum values for Qhd

are 3.8− 8.1 times smaller than the maximum values for Qfrc.
Figure 6(c) shows a plot of the total rate of energy dissipation per unit area,

Eq(t) = 1
S

∫
V
QdV , as a function of time, with lines coloured as in Figure 6(a).

Since throughout each simulation, Qfrc is larger than Qhd, the curves for Q follow
the same trend as those for Qfrc. A stronger overlying field leads to slightly higher
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Q, but the variation of Q within each curve (3.1 − 3.8 × 104 ergs cm−2 s−1) is
larger than the variation between the simulations with different overlying field
strengths (1.1 × 104 ergs cm−2 s−1 difference between the mean values for the
no overlying field and 10 G cases). Therefore, the overall energy dissipation is
determined mainly by the photospheric evolution of the magnetic field. The
mean and maximum values of Eq(t) for each simulation are given in Table 2.
Figure 6(d) shows the cumulative energy dissipated, per unit area, as a function
of time, Ed(t), for each strength of overlying field, obtained by integrating Q
over both the volume and time:

Ed(t) =
1
S

∫ t

0

[ ∫
V

QdV

]
dt. (7)

We see that a stronger overlying field leads to a greater cumulative amount of
energy dissipated. The slopes of these curves are given by the mean values of
Eq(t) in Table 2, and can be related to the overlying field strength (B0) by a
quadratic:

Eq(t) = 75.6B2
0 + 339.8B0 + 3.1× 104. (8)

The values for the total energy dissipated by the end of each simulation (t = tmax)
are also given in Table 2.

The rate of energy dissipation per unit area (ergs cm−2 s−1) in each simulation
is on average 3.1−4.2×104 ergs cm−2 s−1. These values are too low to explain the
radiative losses of the quiet Sun corona, being only 31−42% of the 105 ergs cm−2

s−1 calculated by Withbroe and Noyes (1977) and 6.3−8.6% of the 4.9×105 ergs
cm−2 s−1 calculated by Habbal and Grace (1991). Due to the fact that the values
are too low, it is of interest to compare the energy dissipated to the Poynting
flux through the photospheric boundary, as clearly we cannot dissipate more
energy than has been injected. Considering the plots of free magnetic energy as
a function of time (Figure 3(a)), they are roughly steady, at least for the 1 G, 3
G and no overlying field cases. This implies that the energy dissipated (Eq(t))
should roughly balance the Poynting flux injected. The Poynting flux through
the photospheric boundary is given by

P = − c

4π

∫
S

(E×B) · dS, (9)

where dS = dSn̂ and S is the area of the photospheric boundary surface with
unit normal vector n̂. From Ohm’s law,

E = −1
c
v ×B, (10)

so Equation 9 simplifies to

P =
1

4π

∫
S

[
vxBxBz + vyByBz − vzB2

x − vzB2
y

]
dS. (11)

The individual terms in Equation 11 may be split into two distinct groups.
Those involving vx and vy represent energy flow into or out of the domain due
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to horizontal boundary flows. The terms involving vz represent energy flow into
or out of the domain due to flux emergence or cancellation.

As computed in Mackay, Green, and van Ballegooijen (2011), an order of
magnitude estimate of the Poynting flux due to horizontal boundary flows is:

P1 ≈
vhBzBhS

4π
, (12)

where Bh and Bz are typical values for horizontal and vertical magnetic field
at the photosphere and vh is a typical value for horizontal velocities at the
photosphere.

In all simulations, the mean vertical field strength is Bz = 4.8 G over a
photospheric area of S = 2.5×1019 cm2 and the mean value of our supergranular
velocity profile at the photosphere is vh = 0.24 km s−1. The only other parameter
is the typical value for the horizontal field strength, Bh, which varies from one
simulation to the next due to the overlying field. The mean values of Bh for each
simulation are listed in Table 2, along with the mean energy dissipation, Eq(t),
and the value of P1 calculated for each simulation. The values in Table 2 show
that our order of magnitude estimate for energy injected due to horizontal flows
is within a factor of 2− 3 of the energy dissipated for each simulation, so are in
good agreement.

While we are able to estimate the Poynting flux resulting from horizontal
flows, we cannot calculate the Poynting flux from vertical flows as, due to our
special boundary treatment (Section 2.2), there is no vz defined on the photo-
spheric boundary of our model. The component of the Poynting flux due to vz
would likely lead to both injection and removal of energy respectively during
emergence and cancellation events. As the flux domain is in a steady state, with
the rates of flux emergence and cancellation roughly identical (see Paper I), we
may assume that these processes lead to no net injection of energy. In addition,
Parnell and De Moortel (2012) have estimated, using observational data, that
the Poynting flux injected due to the emergence of magnetic flux is significantly
smaller than that injected due to the horizontal motions of existing magnetic
flux.

Assuming equal rates of energy input and loss due to emergence and cancel-
lation, this calculation shows that the energy injected does in fact match the
energy dissipated within an order of magnitude. This implies that the reason
why the energy dissipated within our simulations is not high enough to account
for coronal radiative losses is in part due to the fact that not enough energy has
been injected in the first place. Therefore, in future simulations, increasing vh,
Bh or Bz may lead to an increase in energy dissipation.

We note that other possible reasons for the energy dissipation rate being too
low are that this is not a true physical dissipation, and many simplifications have
been made for our model. For example, our model contains no plasma and we do
not resolve wave motions. The relative simplicity of the synthetic magnetograms
compared to observed magnetograms may also be a factor. While the values
calculated for Eq(t) are too low to explain coronal heating, it is of interest for
us to consider the location and structure of the energy dissipation term, Q.
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Figures 6(a)−(d) consider the volume integrated rate of energy dissipation
over the entire 3D simulation for each strength of overlying field. We now consider
where Q is spatially located within individual frames of the 3 G simulation.
Although results are presented here only for the 3 G simulation, similar results
are found for other strengths of the overlying field. Figure 6(e) shows the rate
of energy dissipation (integrated in x and y) as a function of height. This is
computed with units of ergs cm−2 s−1 as follows:

Eq(z) =
Lz
S

∫ ymax

ymin

∫ xmax

xmin

Q(x, y, z)dxdy.

Six curves are plotted at intervals of 50 min from t = 120.17 − 124.33 hr, the
other six are plotted at intervals of 8 hr from t = 128−168 hr. Colours span from
blue to red with increasing time. The curve at the earliest time (t = 120.17 hr)
is lowest, as the coronal magnetic field is still close to potential. The height of
the curves increases with increasing time until a near steady rate of dissipation
is reached, where very little difference is seen between the curves. At each time,
the greatest rate of energy dissipation is found low down, near the photosphere.
This is not surprising when we consider the equation describing Q (Equation 6).
From this equation we see that Qfrc and Qhd are both proportional to magnetic
field strength, |B|, Qfrc is also proportional to velocity, |v|, and Qhd to gradients
in α. Figure 6(f) shows a plot of the total absolute flux through surfaces of
constant z, as a function of height. This is shown at t = 168 hr, but similar
curves are seen throughout the simulation. This is computed as:

φ(z) =
∫ ymax

ymin

∫ xmax

xmin

|Bz(x, y, z)|dxdy. (13)

The flux is greatest low down, near the magnetic sources, then drops of rapidly
with increasing height. This indicates that most connections between magnetic
features close low down. From Figure 6(e), the rate of energy dissipation also
rapidly drops with increasing height, having decreased by more than an order of
magnitude by z = 2 Mm. Therefore, the energy dissipation term Q has its largest
effect close to the photosphere. In contrast to energy dissipated (which from
Equation 6 is always > 0), localised values of free magnetic energy density can
be either positive or negative. In Figure 3(e) and (f) black patches can be seen low
down, indicating locations of negative free energy density, most likely occurring
due to the cancellation of magnetic features on the photosphere removing energy.
Higher up, the free energy density tends to be only positive (white patches). The
combined effect of positive and negative regions low down results in the peak in
total free energy density as a function of height occurring higher up, just below
1 Mm (Figure 3(b)), where the free energy density becomes solely positive. The
movie, magnet48b q ht.mpg, shows the rate of energy dissipation as a function
of height for the first 8.3 hr of the 3 G simulation. At the start of the movie, at
greater heights, the rate of energy dissipation gradually increases until the curve
becomes more or less steady. One can see occasional kinks in the curve at low
z, which then propagate upward.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. All images are for the 3 G simulation. Darker regions correspond to higher values.
(a) and (b) Rate of energy dissipation, Q, integrated in z. The images are shown in the x− y
plane, saturated at 1.5 × 105 ergs cm−2 s−1. Positive (red) and negative (green) contours of
Bz at z = 0 Mm are over-plotted at levels of ±[7, 13, 27, 53, 106] G. (c) and (d) Rate of energy
dissipation, Q, saturated at 810 ergs cm−2 s−1, shown in the x−y plane at z = 3 Mm. (e) and
(f) Images of Q in the x−z plane integrated in y, saturated at 1.5×105 ergs cm−2 s−1. Images
in the left-hand column are shown at t = 128 hr and in the right-hand column at t = 168 hr.
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Figures 7(a) and (b) show images of Q integrated in z, in the x−y plane, from
the 3 G simulation. This is computed with units of ergs cm−2 s−1 as follows:

Eq(x, y) =
∫ zmax

zmin

Q(x, y, z)dz.

As in Figure 5, the colour table has been reversed, so that darker regions cor-
respond to higher values of Eq(x, y). The images are shown at (a) t = 128
hr and (b) t = 168 hr, and are saturated at a level of 1.5 × 105 ergs cm−2

s−1. As in Figures 3(c) and (d), contours of Bz at z = 0 Mm are over-plotted.
One can see that Q is more localised than the free magnetic energy. Patches
of Q tend to lie around the magnetic network, but not necessarily at the same
locations as free magnetic energy seen in Figures 3(c) and (d). In addition, we
do not see far-reaching bands of Q across the supergranules as we did with the
free energy. In Paper II, it was determined that Q is mainly located at sites
of changing magnetic connectivity and low down, near the magnetic elements.
Therefore, it is unsurprising that in these simulations, Q is seen mainly at the
magnetic network, as this is where large numbers of magnetic elements lie, and
the magnetic connectivity is constantly changing due to the continual interaction
of these elements with one another.

A movie showing Q in the x − y plane for the 3 G simulation is available
(magnet48b q xy bz.mpg). It shows Q integrated in z, and saturated at 1.5×105

ergs cm−2 s−1, with contours of Bz at z = 0 Mm over-plotted. The movie
shows that the locations and evolution of Q are very different from those of
the positive free magnetic energy density (magnet48b free xy bz.mpg). Indeed,
while many of the patches of positive free magnetic energy density were seen to
be long-lived, regions of Q are seen to be very short-lived, occurring in rapidly
evolving ‘bursts’. Within the free energy density movie, patches of positive free
energy density are often seen stretched across the supergranular cells, whereas Q
tends to be much more localised, occurring predominantly within the magnetic
network where large magnetic elements lie. Several large bursts of Q can be seen
throughout the movie, in regions where many magnetic elements are emerging
and interacting with one another. For readers unable to view the movie, six still
images from the movie spaced 1 hr apart are included in Appendix A (Figure 10).
It can be seen that the spatial distribution of Q integrated in the LOS changes
significantly from one hour to the next. Note that the evolution of Q that we see
in these movies is dominated by Q low down, since the rate of energy dissipation
rapidly decreases with increasing z (Figures 6(e) and (f)). We now consider the
spatial location of Q as a function of height above the photosphere.

Figures 7(c) and (d) show x − y plane images of Q at z = 3 Mm in the 3 G
simulation, at t = 128 hr and t = 168 hr respectively. Q at height z = 3 Mm
is given by Q(x, y, 3)Lz. As in Figures 7(a) and (b), many patches of Q can be
seen located above the boundaries between supergranules. However, in contrast
to Figures 7(a) and (b), within Figures 7(c) and (d) one can also see much more
fine-scale structure to Q when it is not integrated along the line of sight. Also
in contrast to Figures 7(a) and (b), where Q integrated over z is predominantly
located at the magnetic network, here we see long strands of Q which lie across
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the supergranules at z = 3 Mm. These are localised regions of energy dissipation
that are found mainly at sites of changing magnetic connectivity. A movie of
Q above the photosphere is available (magnet48b q xy 3 10.mpg) showing Q in
the x− y plane, integrated between z = 3 Mm and z = 10 Mm:

Eq,3-10(x, y) =
∫ z=10 Mm

z=3 Mm
Q(x, y, z)dz,

in units of ergs cm−2 s−1. The movie is saturated at 3× 103 ergs cm−2 s−1. At
this height, the rate of energy dissipation is much lower than at the photosphere,
as the coronal field is evolving more slowly and is less non-potential. The result
of this is that Q is also less rapidly evolving than it is lower down. In addition,
between these heights, Q is seen to occur anywhere within the x−y plane and not
just above the magnetic network. We also see more fine-scale, further reaching
structures. Six images of Q at z = 3 Mm spaced 1 hr apart are also included in
Appendix A (Figure 11), to illustrate the time-scale of evolution at this height.

Figures 7(e) and (f) show x−z plane images of Q integrated in y, saturated at
1.5×105 ergs cm−2 s−1, at t = 128 hr and t = 168 hr, respectively. In agreement
with Figures 6(e) and (f), the energy dissipation is seen to be greatest low down.
Finer-scale structure can then be seen between z = 2.5 Mm and z = 5 Mm.
Two movies of Q in the x − z plane for the 3 G simulation are included with
this paper. Similar evolution is seen in the y − z plane and for other strengths
of overlying field. The first movie, magnet48b q xz.mpg, shows Q integrated in
y and saturated at the same level as in Figures 7(e) and (f). The second movie,
magnet48b q xz log.mpg, shows the logarithm of the first so that the energy
dissipation can be seen for a wider range of values. From this it can be seen
that fine-scale structures also exist higher up in the corona, where the energy
dissipation is much weaker. In both movies, occasional ‘bursts’ can be seen,
where a feature will drift upwards and disappear (or rather, become too faint
to be shown at the current level of saturation). From these movies, we find that
the energy dissipated and summed along the line of sight provides a fine-scale
dynamic structure that is in qualitative agreement with what is observed on the
Sun low down.

4. Discussion and Conclusions

The aim of this paper was to carry out a preliminary analysis of a set of small-
scale, non-linear force-free field simulations. The simulations were driven by
synthetic magnetograms produced by the model described in Paper I. Four
simulations were run, each driven by the same lower boundary data, three
with different strengths of overlying field: 1 G, 3 G and 10 G, and one with
no overlying field. The lower boundary data consisted of a 48 hr series of syn-
thetic magnetograms of area 50 × 50 Mm2 and of cadence 1 min. The initial
coronal magnetic field for each simulation was potential. This field was then
evolved through a series of quasi-static, non-linear force-free equilibria, via a
magnetofrictional relaxation technique, in response to photospheric boundary

SOLA: km_paper3_arxiv.tex; 7 March 2013; 14:56; p. 22



Coronal Modelling of Synthetic Magnetograms

motions. The continuous nature of this coronal evolution technique means that
current systems are maintained within the corona from one step to the next and
the evolution is smooth. This allows for the build-up and storage of free magnetic
energy − one of the quantities studied within this paper. The presence of free
magnetic energy within our model shows a significant departure from previous
models of the magnetic carpet coronal field, which use potential fields. The other
quantities considered were the energy dissipated and the square of the electric
current density, j2.

Initially, for each simulation, both the free magnetic energy and energy dissi-
pation rate rapidly increase, before levelling off and oscillating about a mean
value. The mean free magnetic energy per unit area for each simulation is
6.5−11.7×107 ergs cm−2, whilst the mean energy dissipation rate is 3.1−4.2×104

ergs cm−2 s−1, resulting in 5.4 − 7.3 × 109 ergs cm−2 (1.4 − 1.8 × 1029 ergs)
being cumulatively dissipated over each 48 hr simulation. For both the free and
dissipated energies, a stronger overlying field results in higher values, although
the effect is more significant for the free energy. It is also clear that the evolution
of both the free and dissipated energies is highly dependent upon the evolution
of the photospheric magnetic field.

While there are similarities between the evolution of the two types of energy
integrated over the volume, they are seen to be less alike when we consider
their location within each simulation. The bulk of the free magnetic energy is
located above the photosphere, between z = 0.5− 0.8 Mm. This is stored along
closed connections between magnetic elements. Regions of positive free energy
density can be seen both in the magnetic network and across supergranular cells;
such regions may also be long-lived. In contrast, the largest amount of energy
dissipation is found low down, near the magnetic sources, and values decrease
rapidly with increasing height. Regions of increased energy dissipation are seen
predominantly in the magnetic network, although weaker, fine-scale strands are
also seen above the photosphere at sites of changing magnetic connectivity. Also
unlike the free magnetic energy density, the large regions of energy dissipa-
tion seen in the x − y plane are much more rapidly evolving (compare movies
magnet48b free xy bz.mpg and magnet48b q xy bz.mpg).

The amount of free magnetic energy built up and stored in each simulation
(1.1 − 2.1 × 1027 ergs) is sufficient to account for such small-scale transient
phenomena as nanoflares (∼ 1024 ergs, Parker, 1988) and X-ray bright points
(1022−1024 ergs s−1, Habbal and Withbroe, 1981; Longcope, 1998). The energy
dissipation rate is not high enough to be able to explain the heating of the quiet
corona, providing a contribution of around 31 − 42% to the required 105 ergs
cm−2 s−1 of Withbroe and Noyes (1977) or 6.3− 8.6% to the required 4.9× 105

ergs cm−2 s−1 of Habbal and Grace (1991). In fact, the discrepancy may be even
larger since Habbal and Grace (1991) did not include the energy losses due to
thermal conduction. However, the location and structure of regions of energy
dissipation within our model are at least in qualitative agreement with what is
observed on small scales on the Sun. The lower rate of energy dissipation may in
part be due to the simplified magnetofrictional model that has been applied, but
also due to an insufficient rate of energy being injected in the first place. An order
of magnitude estimate of the Poynting flux injected showed that this was within
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Table 3. Summary of results for free magnetic energy; energy dissipated, Q, and current
density, j2.

Quantity Location Variation Effect of O/L

in height field strength

Free Magnetic network and Mostly stored z = 0.5− 0.8 Mm Significant

Energy across s/g cells. then rapid decrease increase in

with increasing z. total with

increasing B0

Q Magnetic network and Rapid decrease with Slight

sites of changing increasing z increase in

magnetic connectivity. total with

increasing B0

j2 Magnetic network and

non-potential regions. − −
Follows field lines.

a factor or 2−3 of the mean energy dissipated in each simulation. This indicates
that increasing the magnitude of the horizontal velocities or the horizontal or
vertical magnetic field components at the photosphere, hence increasing the
Poynting flux, could result in higher energy dissipation. Another reason for our
Poynting flux (and hence energy dissipated) being lower than observed values is
that in the present model, our magnetic features are treated as ‘rigid’ bodies.
If the magnetic field of an actual feature were instead contained within many
intense kilogauss flux tubes, the movement of features would be more fluid (as is
observed) as the intense flux tubes have high local velocities. This would lead to
a greater injection of Poynting flux. It should also be noted that our model does
not include a chromosphere. Habbal and Grace (1991) determined chromospheric
radiative losses to be 3.2 × 105 ergs cm−2 s−1, while the value determined by
Withbroe and Noyes (1977) is an order of magnitude higher at 4×106 ergs cm−2

s−1. A more complex model that included a chromosphere with the effects of,
for example, Alfvén waves and turbulence would likely result in a much higher
rate of energy dissipation (e.g. van Ballegooijen et al. (2011)).

Locations of increased j2 are found to be co-located with regions of positive
free magnetic energy density, as both are dependent on the magnetic field being
non-potential. Visually, j2 is seen to follow the shape of the magnetic field where
α is non-zero. Table 3 gives a summary of results for each of the quantities studied
in this paper, indicating their locations and the effect of increasing the strength
of the overlying field.

There are several avenues for future work using the non-linear force-free
coronal modelling technique described here. The simulations presented in this
paper will be studied in more detail. For example, a more in depth study of
the connectivity of the magnetic field will be conducted, similar to the study
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of Close et al. (2003), who analysed potential coronal fields. It would also be
of interest to investigate in detail the effect of each of the photospheric flux
evolution processes on the evolution of the coronal field and on each of the energy
quantities discussed in this paper. We already know the flux, location and time
of occurrence of each of the processes within the synthetic magnetogram series.
Further 2D simulations will also be run to produce synthetic magnetograms
that include an evolving supergranular flow profile and magnetic features on
smaller scales. The added complexity of evolving photospheric flows and smaller
magnetic features will likely result in a larger build up of free magnetic energy
and greater energy dissipation, when the coronal field evolution is simulated.

The rate of energy dissipation per unit area produced by our present simu-
lations was found to be too low to explain quiet Sun radiative losses. This is
unsurprising, however, as many simplifications have been made for our coronal
model and it is not a true physical energy dissipation − we do not have currently
have an energy equation. For example, the present simulations do not include
the effects of small-scale magnetic braiding and MHD waves, which are believed
to be important for heating the chromosphere and corona in active regions (van
Ballegooijen et al., 2011; Asgari-Targhi and van Ballegooijen, 2012). In future
we intend to extend the present magnetofrictional model to contain plasma by
including the pressure and density terms in the equations of magnetohydro-
dynamics. We will then be able to follow the corresponding plasma processes
associated with energy dissipation and give an estimate of the resultant plasma
heating.

The magnetofrictional technique will also be applied to real magnetogram
data, such as from Hinode/SOT or SDO/HMI. A study will be carried out to
compare regions of interest within a simulated non-linear force-free coronal field
driven by observed magnetograms to events occurring in corresponding coronal
images (e.g. using various wavelengths of SDO/AIA). What is clear is that within
this single, relatively ‘simple’ simulation, a wide range of processes and dynamics
is occurring. A careful and detailed analysis of these and other non-linear force-
free field simulations of the magnetic carpet coronal field will be carried out in
future.
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Appendix

A. Images From Movies

This appendix contains four figures, each with six images spaced 1 hr apart from
t = 144 hr to t = 149 hr, taken from some of the x − y plane movies included
with this paper.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Free magnetic energy density integrated in the line-of-sight, for the 3 G overlying
field simulation. The images are shown in the x − y plane saturated at ±1.9 × 1022 ergs.
Contours of Bz at z = 0 Mm are over-plotted where red contours represent positive magnetic
field and green contours represent negative, at levels of ±[7, 13, 27, 53, 106] G. The images are
shown at (a) t = 144 hr, (b) t = 145 hr, (c) t = 146 hr, (d) t = 147 hr, (e) t = 148 hr and (f)
t = 149 hr.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Normalised j2 integrated in z, shown in the x − y plane, for the 3 G overlying
field simulation. Darker regions correspond to higher values. Contours of Bz at z = 0 Mm are
over-plotted where red contours represent positive magnetic field and green contours represent
negative, at levels of ±[7, 13, 27, 53, 106] G. The images are shown at (a) t = 144 hr, (b) t = 145
hr, (c) t = 146 hr, (d) t = 147 hr, (e) t = 148 hr and (f) t = 149 hr.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Rate of energy dissipation, Q, integrated in the line-of-sight, for the 3 G overlying
field simulation. Darker regions correspond to higher values. The images are shown in the x−y
plane saturated at 1.5 × 105 ergs cm−2 s−1. Contours of Bz at z = 0 Mm are over-plotted
where red contours represent positive magnetic field and green contours represent negative, at
levels of ±[7, 13, 27, 53, 106] G. The images are shown at (a) t = 144 hr, (b) t = 145 hr, (c)
t = 146 hr, (d) t = 147 hr, (e) t = 148 hr and (f) t = 149 hr.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Rate of energy dissipation, Q, for the 3 G overlying field simulation. The images
are shown in the x − y plane at z = 3 Mm, saturated at 810 ergs cm−2 s−1. Darker regions
correspond to higher values. They are shown at (a) t = 144 hr, (b) t = 145 hr, (c) t = 146 hr,
(d) t = 147 hr, (e) t = 148 hr and (f) t = 149 hr.
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Krishnakumar, V.: 1998, Astrophys. J. 509, 435.
Van Doorsselaere, T., Nakariakov, V.M., Young, P.R., Verwichte, E.: 2008, Astron. Astrophys.

487, L17.
Verwichte, E., Nakariakov, V.M., Ofman, L., DeLuca, E.E.: 2004 Solar Phys. 223, 77.
Wang, H., Zirin, H.: 1989 Solar Phys. 120, 1.
Wang, T.J., Inees, D.E., Qiu, J.: 2007, Astrophys. J. 656, 598.

SOLA: km_paper3_arxiv.tex; 7 March 2013; 14:56; p. 30



Coronal Modelling of Synthetic Magnetograms

Wang, H., Tang, F., Zirin, H., Wang, J.: 1996 Solar Phys. 165, 223.
West, M.J., Zhukov, A.N., Dolla, L., Rodriguez, L.: 2011, Astrophys. J. 730, 122.
Wilmot-Smith, A.L., Hornig, G., Priest, E.R.: 2009 Geophys. Astrophys. Fluid Dyn. 103, 515.
Withbroe, G.L., Noyes, R.W.: 1977, Annu. Rev. Astron. Astrophys. 15, 363.
Yang, W.H, Sturrock, P.A., Antiochos, S.K.: 1986, Astrophys. J. 309, 383.
Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008, Solar Phys. 247, 103.
Zhou, G.P., Wang, J.X., Jin, C.L.: 2010, Solar Phys. 267, 63.
Zirin, H.: 1985, Austral. J. Phys. 38, 961.

SOLA: km_paper3_arxiv.tex; 7 March 2013; 14:56; p. 31



SOLA: km_paper3_arxiv.tex; 7 March 2013; 14:56; p. 32


