157 research outputs found

    Bacterial community structure in soil microaggregates and on particulate organic matter fractions located outside or inside soil macroaggregates

    Get PDF
    Soil aggregates and particulate organic matter (POM) are thought to represent distinct soil microhabitats for microbial communities. This study investigated whether organo-mineral (0–20, 20–50 and 50–200 ÎŒm) and POM (two sizes: >200 and 200 ÎŒm). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial communities structure of organo-mineral soil fractions were significantly different in comparison to the unfractionated soil. Conversely, there were little differences in C concentrations, C:N ratios and no differences in DGGE profiles between organo-mineral fractions. Bacterial communities between soil fractions located inside or outside macroaggregates were not significantly different. However, the bacterial communities on POM fractions were significantly different in comparison to organo-mineral soil fractions and unfractionated soil, and also between the 2 sizes of POM. Thus in the studied soil, only POM fractions represented distinct microhabitats for bacterial community, which likely vary with the state of decomposition of the POM

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    The sound of geological targets on Mars from the absolute intensity of laser-induced sparks shock waves

    Get PDF
    Inspection of geological material is one of the main goals of the Perseverance rover during its journey across the landscape of the Jezero crater in Mars. NASA's rover integrates SuperCam, an instrument capable of performing standoff characterization of samples using a variety of techniques. Among those tools, SuperCam can perform laser-induced breakdown spectroscopy (LIBS) studies to elucidate the chemical composition of the targets of interest. Data from optical spectroscopy can be supplemented by simultaneously-produced laser-produced plasma acoustics in order to expand the information acquired from the probed rocks thanks to the SuperCam's microphone (MIC) as it can be synchronized with the LIBS laser. Herein, we report cover results from LIBS and MIC during Perseverance's first 380 sols on the Martian surface. We study the correlation between both recorded signals, considering the main intrasample and environmental sources of variation for each technique, to understand their behavior and how they can be interpreted together towards complimenting LIBS with acoustics. We find that louder and more stable acoustic signals are recorded from rock with compact surfaces, i.e., low presence loose particulate material, and harder mineral phases in their composition. Reported results constitute the first description of the evolution of the intensity in the time domain of shockwaves from laser-produced plasmas on geological targets recorded in Mars. These signals are expected contain physicochemical signatures pertaining to the inspected sampling positions. As the dependence of the acoustic signal recorded on the sample composition, provided by LIBS, is unveiled, the sound from sparks become a powerful tool for the identification of mineral phases with similar optical emission spectra.Many people helped with this project in addition to the co-authors, including hardware and operation teams, and we are most grateful for their support. This project was supported in the USA by NASA’s Mars Exploration Program and in France is conducted under the authority of CNES. Research funded by projects UMA18-FEDERJA-272 from Junta de AndalucĂ­a and PID2020-119185GB-I00 from Ministerio de Ciencia e Innovacion, of Spain. P.P. is grateful to the European Union’s Next Generation EU (NGEU) plan and the Spanish Ministerio de Universidades for his Margarita Salas fellowship under the program â€Čâ€ČAyudas para la Recualificacion del Sistema Universitario Españolâ€Čâ€Č. RCW was funded by JPL contract 1681089. A.U was funded by NASA Mars 2020 Participating Scientist program 80NSSC21K0330. Funding for open access charge: Universidad de MĂĄlaga / CBU

    Inequalities in the use of secondary prevention of cardiovascular disease by socioeconomic status: evidence from the PURE observational study

    Get PDF
    Background: There is little evidence on the use of secondary prevention medicines for cardiovascular disease by socioeconomic groups in countries at different levels of economic development. Methods: We assessed use of antiplatelet, cholesterol, and blood-pressure-lowering drugs in 8492 individuals with self-reported cardiovascular disease from 21 countries enrolled in the Prospective Urban Rural Epidemiology (PURE) study. Defining one or more drugs as a minimal level of secondary prevention, wealth-related inequality was measured using the Wagstaff concentration index, scaled from −1 (pro-poor) to 1 (pro-rich), standardised by age and sex. Correlations between inequalities and national health-related indicators were estimated. Findings: The proportion of patients with cardiovascular disease on three medications ranged from 0% in South Africa (95% CI 0–1·7), Tanzania (0–3·6), and Zimbabwe (0–5·1), to 49·3% in Canada (44·4–54·3). Proportions receiving at least one drug varied from 2·0% (95% CI 0·5–6·9) in Tanzania to 91·4% (86·6–94·6) in Sweden. There was significant (p<0·05) pro-rich inequality in Saudi Arabia, China, Colombia, India, Pakistan, and Zimbabwe. Pro-poor distributions were observed in Sweden, Brazil, Chile, Poland, and the occupied Palestinian territory. The strongest predictors of inequality were public expenditure on health and overall use of secondary prevention medicines. Interpretation: Use of medication for secondary prevention of cardiovascular disease is alarmingly low. In many countries with the lowest use, pro-rich inequality is greatest. Policies associated with an equal or pro-poor distribution include free medications and community health programmes to support adherence to medications. Funding: Full funding sources listed at the end of the paper (see Acknowledgments)

    First Assessment of the Impacts of the COVID-19 Pandemic on Global Marine Recreational Fisheries

    Get PDF
    This work is the result of an international research effort to determine the main impacts of the COVID-19 pandemic on marine recreational fishing. Changes were assessed on (1) access to fishing, derived from lockdowns and other mobility restrictions; (2) ecosystems, because of alterations in fishing intensity and human presence; (3) the blue economy, derived from alterations in the investments and expenses of the fishers; and (4) society, in relation to variations in fishers’ health and well-being. For this, a consultation with experts from 16 countries was carried out, as well as an international online survey aimed at recreational fishers, that included specific questions designed to capture fishers’ heterogeneity in relation to behavior, skills and know-how, and vital involvement. Fishers’ participation in the online survey (5,998 recreational fishers in 15 countries) was promoted through a marketing campaign. The sensitivity of the fishers’ clustering procedure, based on the captured heterogeneity, was evaluated by SIMPER analysis and by generalized linear models. Results from the expert consultation highlighted a worldwide reduction in marine recreational fishing activity. Lower human-driven pressures are expected to generate some benefits for marine ecosystems. However, experts also identified high negative impacts on the blue economy, as well as on fisher health and well-being because of the loss of recreational fishing opportunities. Most (98%) of the fishers who participated in the online survey were identified as advanced, showing a much higher degree of commitment to recreational fishing than basic fishers (2%). Advanced fishers were, in general, more pessimistic about the impacts of COVID-19, reporting higher reductions in physical activity and fish consumption, as well as poorer quality of night rest, foul mood, and raised more concerns about their health status. Controlled and safe access to marine recreational fisheries during pandemics would provide benefits to the health and well-being of people and reduce negative socioeconomic impacts, especially for vulnerable social groups.Versión del edito

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants
    • 

    corecore