10 research outputs found

    Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    No full text
    Mesoporous and conventional Fe-containing ZSM-5 and ZSM-12 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in the selective catalytic reduction (SCR) of NO with NH3. It was found that for both Fe/HZSM-5 and Fe/HZSM-12 catalysts with similar Fe contents, the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite as was confirmed by SEM analysis. Moreover, the maximum activity for the mesoporous zeolites is found at higher Fe concentrations than for the conventional zeolites. This also illustrates that the mesoporous zeolites allow a better dispersion of the metal component than the conventional zeolites. Finally, the influence of different pretreatment conditions on the catalytic activity was studied and interestingly, it was found that it is possible to increase the SCR performance significantly by preactivation of the catalysts in a 1% NH3/N2 mixture at 500 °C for 5 h. After preactivation, the activity of mesoporous 6 wt% Fe/HZSM-5 and 6 wt% Fe/HZSM-12 catalyst is comparable with that of traditional 3 wt% V2O5/TiO2 catalyst used as a reference at temperatures below 400 °C and even more active at higher temperatures

    Modern Trends of Organic Chemistry in Russian Universities

    No full text
    corecore