20 research outputs found

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    Repair of the structure of a compacted Vertisol via wet/dry cycles

    No full text
    The effect of wet/dry cycles on repairing a compacted Vertisol was studied. The change in soil structure was assessed by infiltration, clod bulk density, shear strength and image analysis of surface morphology. Wetting was done by flooding and by simulated rainfall. Drying was achieved by surface evaporation. Five flood-wet/dry cycles resulted in a two fold and one and a half fold increase in water infiltration rate for the wheel track and bed cores, respectively. This increase was associated with a marked decrease in surface shear strength of the cores after only one wet/dry cycle for both types of wetting. Quantification of the soil structure on the soil surface indicated that both % total crack and shrinkage block size decreased for wheel cores with the increasing number of wet/dry cycles. Cracks became narrower and size of shrinkage blocks smaller as the number of flood wet/dry cycles increased. Rain wetting produced bigger cracks and blocks but fewer in number compared with flood wetting. For flood-wet bed cores, higher values of clod specific volume after one flood-wet/dry cycle in the 0.05–0.2 m depth suggest that bulk density had decreased and porosity increased, relative to the original field condition

    Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective

    No full text
    Rice is second only to maize among the world's most important cereal crops, with a global harvested area of approximately 158 million hectares and an annual production of more than 700 million tonnes as paddy rice. At this scale, rice production generates vast amounts of waste in the form of straw, husk, and bran. Because of high cellulose, lignin, and silica contents, rice biowaste (RB) can be used to produce rice biochar (RBC) and rice compost (RC). Furthermore, RB can be used as sorbents, soil conditioners, bricks/concrete blocks, flat steel products, and biofuels, all of which make significant contributions to meeting United Nations Sustainable Development Goals (UNSDGs). Although previous reviews have explored individual applications of rice feedstocks, inadequate attention has been paid to multifunctional values and potential multi-utilities. Here, we offer a comprehensive review of RBC and RC with respect to: (1) preparation and characterization; (2) applications as soil conditioners and organic fertilizers and their effects on soil-carbon sequestration; (3) remediation of toxic element–contaminated soils and water; (4) removal of colors, dyes, endocrine-disrupting chemicals, personal-care products, and residual pesticides from water; and (5) applications in the construction industry. Specifically, we describe the opportunities for the sustainable use of RBC and RC in the management of contaminated soils and water as well as the construction industry. Overall, this review is expected to lengthen the list of possible multifunctional applications of RBC and RC. © 2021 Elsevier Lt

    Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications

    No full text
    While the potential of biochar (BC) to immobilize potentially toxic elements (PTEs) in contaminated soils has been studied and reviewed, no review has focused on the potential use of BC for enhancing the phytoremediation efficacy of PTE-contaminated soils. Consequently, the overarching purpose in this study is to critically review the effects of BC on the mobilization, phytoextraction, phytostabilization, and bioremediation of PTEs in contaminated soils. Potential mechanisms of the interactions between BC and PTEs in soils are also reviewed in detail. We discuss the promises and challenges of various approaches, including potential environmental implications, of BC application to PTE-contaminated soils. The properties of BC (e.g., surface functional groups, mineral content, ionic content, and π-electrons) govern its impact on the (im)mobilization of PTEs, which is complex and highly element-specific. This review demonstrates the contrary effects of BC on PTE mobilization and highlights possible opportunities for using BC as a mobilizing agent for enhancing phytoremediation of PTEs-contaminated soils. © 2022, The Author(s)
    corecore