7 research outputs found

    Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field

    Get PDF
    Exact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this particular case, we investigate the main physical properties of the equatorial circular orbits and related effective potentials. In addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibrated with the ephemerides of the planets of the solar system and the Moon (EPM2011). In general, we show that the magnetic punctual mass predicts values that are in better agreement with observations than the values predicted in Einstein's gravity alone. © 2016 Abraão J. S. Capistrano and Antonio C. Gutiérrez-Piñeres

    Exact relativistic magnetized haloes around rotating disks

    Get PDF
    The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk. © 2015 Antonio C. Gutiérrez-Piñeres and Abraão J. S. Capistrano
    corecore