
Research Article
Exact Relativistic Magnetized Haloes around Rotating Disks

Antonio C. Gutiérrez-Piñeres1,2 and Abraão J. S. Capistrano3,4

1Facultad de Ciencias Básicas, Universidad Tecnológica de Boĺıvar, CP 131001, Cartagena, Colombia
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The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In
this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features
of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the
relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only.
For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and
satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the
first relativistic model describing analytically the magnetized halo of a rotating disk.

1. Introductory Remarks

In the observational context, many ambiguities still exist
about the main constituents, geometry, and dynamics (ther-
modynamics) of the galactic disk-haloes. However, there
are several different observations which probe the galactic
and surrounding galactic magnetic field. For instance, it can
be measured by nonthermal radio emission from energy
equipartition that results from the interaction of magnetic
energy with relativistic particles which can play a role in the
formation of arms in spiral galaxies (see Krause’s “Magnetic
Fields and Halos in Spiral Galaxies” [1] and “Magnetic Fields
in Spiral Galaxies” [2] and references therein). For nearby
galaxies, other probes are used as optical polarization, polar-
ized emission of clouds and dust grains, maser emissions,
diffuse radio polarized emission, and rotation measures of
background polarization sources also. Magnetic fields can
be seen as a new structural quantity and added to other
constituent parameters (e.g., 𝐻-alpha lines, density mass,
local shocks, etc.) are important to study the formation and
dynamics of galaxies. Other works propose that magnetic
fields also play important role in large-structure formation
[3].

It is important to stress that magnetic fields are found
mainly in interstellar medium and can be found in every type
of galaxies but remarkably noticed in spiral galaxies (see [4]
and references therein). For instance, Milky Way has been
actively studied in its three regions (central bulge, halo, and
accretion disk).Thismotivates obtaining a proper description
of magnetic fields from an oriented general principle and
relativistic thin disks have been revealed as one of the best
ways to study them. Relativistic disks were also extensively
studied in literature in several configurations. Exact solutions
that have relativistic static thin disks as their sources were first
studied by Bonnor and Sackfield [5] and T. Morgan and L.
Morgan [6, 7]. Subsequently, several classes of exact solutions
corresponding to static [8–17] and stationary [18–22] thin
disks have been obtained by different authors.

The superposition of a static or stationary thin disk with a
black hole has been considered in [23–31]. Thin disks around
static black holes in amagnetic field have been studied in [32].
Relativistic disks embedded in an expanding Friedmann-
Lemâıtre-Robertson-Walker universe have been studied in
[33] and perfect fluid disks with halos in [34]. Furthermore,
the stability of thin disks models has been investigated using
a first-order perturbation of the energy-momentum tensor
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in [35]. On the other hand, thin disks have been discussed
as sources for Kerr-Newman fields [36, 37], magnetostatic
axisymmetric fields [38, 39], and conformastatic and con-
formastationary metrics [40–42]. Also, models of electrovac-
uum static counterrotating dust disks were presented in
[43], charged perfect fluid disks were studied in [44], and
charged perfect fluid disks were presented as sources of static
and Taub-NUT-type spacetimes in [45, 46]. Also, monopole
and dipole layers in curved spacetimes were analyzed in
[47] and electromagnetic sources distributed on shells in a
Schwarzschild background in [48].

The thin disks with magnetic fields studied in [36–
38] were obtained by means of the well-known “displace,
cut, and reflect” method. Solutions that can be interpreted
as thin disks of finite extension can be obtained if an
appropriate coordinate system is introduced. A coordinate
system that adapts naturally to a finite source and presents the
required discontinuous behavior is given by the spheroidal
coordinates. Some examples of finite thin disks obtained
from vacuum solutions expressed in these coordinates can be
found in [5, 6, 9, 11] and fromelectrovacuum solutions in [42].

Moreover, interestingly, magnetic fields seem to play
an important role in the formation of jets (resulting from
collimated bipolar outflows of relativistic particles) and the
accretion disk near supermassive black holes [49]. A current
revision of the status of our knowledge about the magnetic
fields in our Milky Way and in nearby star-forming galaxies
is summarized in [50]. Additionally, a study of the disk and
halo rotation is reported in [51], whereas the possibility of
magnetic fields that can be generated in the outskirts of disks
is studied in [52]. Solutions for the Einstein and Einstein-
Maxwell field equations which are consistently applicable to
the context of astrophysics remain a topical problem. Never-
theless, the effects ofmagnetic fields on the physical processes
in galaxies and their disk-halo interaction have been scarcely
considered in the past. Similarly, the relevance of relativistic
models of disks around black holes in a magnetic field is
discussed in [32].

The presence of the electric field on the dark matter halo
models has been considered in [53], whereas the presence of
electromagnetic field in the halo-disk systemhas been studied
in [54, 55] in which the gravitational sources are statics. In
[54] we provided detailed overview of the research in the
relativistic disks; accordingly we will not repeat them here.

In this paper, we do not focus on the whys and wherefores
of the detailed discussion on the probes and relevance of
magnetic fields on disks but we apply a standard galaxy
modeling as a stationary thin disk and, correspondingly, we
associate the halo with the region surrounding the disk. We
present the conformastationary version of the static thin
disk-halo systems studied in [54]. In addition, we study
the features of the principal quantities characterizing the
dynamic of themagnetized haloes corresponding to the disks
presented in [56]. Therefore, we take the definition in [57] as
standard, following the original terminology by Synge [58]:
conformastationary are those stationary spacetimes with a
conformally flat space of orbits.

Accordingly, we show that the rotating disk-haloes with
isotropic pressure, stress tensor, and heat flow generalize the

static disk-haloes obtained in [54]. Our results are compatible
with those presented in [53] on possible features of galactic
halo. Moreover, the description of the motion of charged
particles on disk is deduced and is in agreement with the
results of the similar analysis discussed in [59]. As far as we
know, this is the first relativisticmodel describing analytically
the relativistic magnetized halo of a rotating disk.

The paper is organized as follows. In Section 2, the
distributional Einstein-Maxwell equations for haloes sur-
rounding thin disks are obtained. In Section 3 we obtain
expressions, in terms of an arbitrary harmonic function, for
the most important quantities characterizing the dynamic of
the disk and halo. In Section 4 we first calculate quantities for
harmonic function described by the generalizedKuzmin-disk
potential.Then, we analyze the obtained results and calculate
the constants ofmotion of the disk.Moreover, the description
of the motion of a charged particle on the halo is shown in
Section 5. Finally, we complete the paper with a discussion of
the results in Section 6.

2. Exact Solutions for Relativistic Magnetized
Haloes Surrounding Thin Disks

In this section we consider the conventional treatment of
rotating galaxies modelled as a stationary thin disk and,
correspondingly, we associate the magnetized halo with the
region surrounding the disk. This is motivated from the
fact that the magnetic field is remarkably noticed on spiral
galaxies and can play a fundamental role in formation of
arms. To do so, we formulate the distributional Einstein-
Maxwell field equations assuming axial symmetry [60]. We
also suppose that the derivatives of the metric and electro-
magnetic potential across the disk space-like hypersurface are
discontinuous. To formulate the corresponding distributional
form of the Einstein-Maxwell field equations, we introduce
the usual cylindrical coordinates 𝑥𝛼 = (𝑡, 𝑟, 𝑧, 𝜑) and assume
that there exists an infinitesimally thin disk located at the
hypersurface 𝑧 = 0. Accordingly, we identify the halo
surrounding the disk with the positive (𝑧 ≥ 0) and negative
(𝑧 ≤ 0) regions around the equatorial plane 𝑧 = 0,
denoted here by the superscripts “±,” so that the metric and
the electromagnetic potential can be written, respectively, as
𝑔
𝛼𝛽

= 𝑔
+

𝛼𝛽
𝜃(𝑧) + 𝑔

−

𝛼𝛽
{1 − 𝜃(𝑧)} and 𝐴

𝛼
= 𝐴
+

𝛼
𝜃(𝑧) + 𝐴

−

𝛼
{1 −

𝜃(𝑧)}. Here 𝜃(𝑧) denotes the Heaviside distribution. As a
consequence, the Ricci tensor reads

𝑅
𝛼𝛽
= 𝑅
+

𝛼𝛽
𝜃 (𝑧) + 𝑅

−

𝛼𝛽
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𝛼𝛽
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where 𝛿(𝑧) is the Dirac distribution and
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with 𝛾
𝛼𝛽

= 2𝑔
𝛼𝛽,𝑧

and all the quantities are evaluated at 𝑧 =

0
+. In agreement with (1) the energy-momentum tensor and
the electric current density acquire the form

𝑇
𝛼𝛽
= 𝑇
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where 𝑇±
𝛼𝛽

and 𝐽
±

𝛼
are, respectively, the energy-momentum

tensors and electric current density of halo. Moreover, 𝑄
𝛼𝛽

and I
𝛼
represent the part of the energy-momentum ten-

sor and the electric current density of disk. The energy-
momentum tensor 𝑇±

𝛼𝛽
in (3a) is taken to be the sum of

two distributional components, the purely electromagnetic
(trace-free) part and a “material” (trace) part:

𝑇
±

𝛼𝛽
= 𝐸
±

𝛼𝛽
+𝑀
±

𝛼𝛽
, (4)

where 𝐸±
𝛼𝛽

is the electromagnetic energy-momentum tensor

𝐸
𝛼𝛽
= 𝐹
𝛼]𝐹

]
𝛽
−
1

4
𝑔
𝛼𝛽
𝐹
𝜇]𝐹
𝜇]
, (5)

with 𝐹
𝛼𝛽

= 𝐴
𝛽,𝛼

− 𝐴
𝛼,𝛽

and 𝑀±
𝛼𝛽

is an unknown “material”
energy-momentum tensor to be obtained. Accordingly, the
Einstein-Maxwell equations, in geometrized units such that
𝑐 = 8𝜋𝐺 = 𝜇

0
= 𝜖
0
= 1, are equivalent to the system of

equations

𝐺
±

𝛼𝛽
= 𝑅
±

𝛼𝛽
−
1

2
𝑔
𝛼𝛽
𝑅
±
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, (6a)

𝐻
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−
1

2
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, (6b)

𝐹
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± ;𝛽
= 𝐽
𝛼

±
, (6c)

[𝐹
𝛼𝛽

] 𝑛
𝛽
= I
𝛼

, (6d)

where𝐻 ≡ 𝑔
𝛼𝛽

𝐻
𝛼𝛽
, and semicolon “;” in the index indicates

the covariant derivative with respect to themetric.The square
brackets in expressions such as [𝐹𝛼𝛽] denote the jump of 𝐹𝛼𝛽
across the surface 𝑧 = 0 and 𝑛

𝛽
denotes a unitary vector

in the direction normal to it. To obtain a solution of the
Einstein-Maxwell equations describing a system composed
of a magnetized halo surrounding a rotating thin disk we
will restrict ourselves to the case where the electric potential
𝐴
𝑡
= 0.
To solve the Einstein-Maxwell equations (6a), (6b), (6c),

and (6d) we assume the conformastationary spacetime given
by the line element

𝑑𝑠
2
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2
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2

) , (7)

where 𝜙 depends only on 𝑟 and 𝑧 and 𝛽 is an arbitrary
real constant. We also assume that the magnetic potential
𝐴
𝜑
is time independent. Accordingly, by computing the

Einstein tensor 𝐺
𝛼𝛽

explicitly from line element (7) and
electromagnetic energy-momentum tensor (5), we obtain for
the nonzero components of the energy-momentum tensor of
the halo (EMTH)𝑀±
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Moreover, from (6c) the nonzero components of the electric
current density on the halo have the form

𝐽
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where all the quantities depend on 𝑟 and 𝑧.
The discontinuity in the 𝑧-direction of 𝑄

𝛼𝛽
and J𝛼

defines, respectively, the surface energy-momentum tensor
(SEMT) 𝑆

𝛼𝛽
and the surface electric current density (SECD)

J𝛼 of the disk, more precisely
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where 𝑑𝑠
𝑛
= √𝑔𝑧𝑧 𝑑𝑧 is the “physical measure” of length in

the direction normal to the 𝑧 = 0 surface. Accordingly, for
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metric (7), the nonzero components of 𝑆
𝛼𝛽

andJ𝛼 are given
by
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J
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= −𝑟
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[𝐴
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respectively. Note that in (11a), (11b), (11c), and (11d) and (12a)
and (12b) all the quantities are evaluated on the surface of the
disk (𝑧 = 0).

In order to reduce the complexity of the last field equation
systems we assume that the halo’s electric current density
vanishes (i.e., 𝐽𝑡

±
= 𝐽
𝜑

±
= 0 in (9a) and (9b)), and it turns

out that the magnetic potential and the metric functions 𝜙
and𝜔 become completely determined in terms of an arbitrary
harmonic function 𝑈(𝑟, 𝑧) as follows (see [54, 56] for more
details):

𝐴
𝜑,𝑟

= −
1

𝑘
𝑟𝑈
,𝑧
, (13a)

𝐴
𝜑,𝑧

=
1

𝑘
𝑟𝑈
,𝑟
, (13b)

(𝛽 + 1) 𝜙 = − ln (1 − 𝑈) , (13c)

𝜔 = 𝑘
𝜔
𝑈, (13d)

with 𝑘 and 𝑘
𝜔
arbitrary constants. Since the nonzero com-

ponents of the EMTD and EMTH and the electric current
density directly depend on themetric functions andmagnetic
potential, we observe that the entire solution is determined by
a single harmonic function.

3. Exact Relativistic Model for
Magnetized Disk-Haloes

So far, by using the inverse method and the distributional
formulation of the Einstein-Maxwell equations, we have
obtained the separate energy-momentum tensor of the disk
and halo. In addition, we have discussed a method to
determine its components in terms of an arbitrary harmonic
function. Now, the behavior of the energy-momentum ten-
sors obtained must be investigated to find what conditions
must be imposed on the solutions and the parameters that
appear in the disk-haloes models in such a way that it can
describe reasonably physical sources. We will now study the
possible features of the disk by assuming that it is possible to
express its energy-momentum tensor in the canonical form:

𝑆
𝛼𝛽
= (𝜇 + 𝑃)𝑉

𝛼
𝑉
𝛽
+ 𝑃𝑔
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𝛼
𝑉
𝛽
+ Q
𝛽
𝑉
𝛼
+ Π
𝛼𝛽
, (14)

where Q
𝛼
𝑉
𝛼

= Q𝛼𝑉
𝛼
= 0, 𝛼 = (𝑡, 𝑟, 𝜑), and all the quantities

are evaluated in 𝑧 = 0+. Similarly, we assume that it is possible
to express the energy-momentum tensor of the halo in the
canonical form:

𝑀
±

𝛼𝛽
= (𝜇
±

+ 𝑃
±

) 𝑉
𝛼
𝑉
𝛽
+ 𝑃
±

𝑔
𝛼𝛽
+ Q
±

𝛼
𝑉
𝛽
+ Q
±

𝛽
𝑉
𝛼

+ Π
±

𝛼𝛽
,

(15)

where Q±
𝛼
𝑉
𝛼

= Q±𝛼𝑉
𝛼
= 0, 𝛼 = (𝑡, 𝑟, 𝑧, 𝜑), and all the

quantities depend on 𝑟 and 𝑧. Consequently, we can say
that the disk and halo are constituted by some mass-energy
distributions described by the energy-momentum tensors
(14) and (15), respectively. 𝑉𝛼 is the four-velocity of a certain
observer. Correspondingly, 𝜇, 𝑃, Q

𝛼
, and Π

𝛼𝛽
are then the

energy density, the isotropic pressure, the heat flux, and the
anisotropic tensor on the surface of the disk. Analogously, 𝜇±,
𝑃
±, Q±
𝛼
, and Π

±

𝛼𝛽
are then the energy density, the isotropic

pressure, the heat flux, and the anisotropic tensor on the halo,
respectively.Thus, it is straightforward to see that for the halo
we have

𝜇
±

= 𝑀
±

𝛼𝛽
𝑉
𝛼

𝑉
𝛽

, (16a)

𝑃
±

=
1

3
H
𝛼𝛽

𝑀
±

𝛼𝛽
, (16b)

Q
±

𝛼
= −𝜇
±

𝑉
𝛼
−𝑀
±

𝛼𝛽
𝑉
𝛽

, (16c)

Π
±

𝛼𝛽
= H
𝛼

𝜇

H
𝛽

]
(𝑀
±

𝜇] − 𝑃
±

H
𝜇]) , (16d)

where the projection tensor is defined by H
𝜇] ≡ 𝑔

𝜇] + 𝑉𝜇𝑉]
and all the quantities depend on 𝑟 and 𝑧, whereas for the disk
we have

𝜇 = 𝑆
𝛼𝛽
𝑉
𝛼

𝑉
𝛽

, (17a)

𝑃 =
1

3
H
𝛼𝛽

𝑆
𝛼𝛽
, (17b)

Q
𝛼
= −𝜇𝑉

𝛼
− 𝑆
𝛼𝛽
𝑉
𝛽

, (17c)

Π
𝛼𝛽
= H
𝛼

𝜇

H
𝛽

]
(𝑆
𝜇] − 𝑃H𝜇]) , (17d)

where all the quantities are evaluated in 𝑧 = 0
+. It is easy

to note that by choosing the angular velocity to be zero
in (A.7) we have then a fluid comoving in our coordinates
system. Hence, we may introduce a suitable reference frame
in terms of the local observers tetrads (A.3a), (A.3b), (A.3c),
and (A.3d) and (A.4a), (A.4b), (A.4c), and (A.4d) in the form

{𝑉
𝛼

, 𝐼
𝛼

, 𝐾
𝛼

, 𝑌
𝛼

} ≡ {ℎ
(𝑡)

𝛼

, ℎ
(𝑟)

𝛼

, ℎ
(𝑧)

𝛼

, ℎ
(𝜑)

𝛼

} , (18)

with the corresponding dual tetrad

{𝑉
𝛼
, 𝐼
𝛼
, 𝐾
𝛼
, 𝑌
𝛼
} ≡ {−ℎ

(𝑡)

𝛼
, ℎ
(𝑟)

𝛼
, ℎ
(𝑧)

𝛼
, ℎ
(𝜑)

𝛼
} . (19)

Since the SECD of the disk J𝛼 can be also written in the
canonical form J𝛼 = 𝜎𝑉

𝛼

+ 𝑗𝑌
𝛼, 𝜎 can be interpreted as

the surface electric charge density and 𝑗 as the “current of
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magnetization” of the disk. A direct calculation shows that
the surface electric charge density𝜎 = 0, whereas the “current
of magnetization” of the disk is given by 𝑗 = −𝑟

−1

𝑒
2𝛽𝜙

[𝐴
𝜑,𝑧
],

where, as above, [𝐴
𝜑,𝑧
] denotes the jump of the 𝑧-derivative

of the magnetic potential across the disk and, all quantities
are evaluated on the disk.

By using the results obtained in the precedent section, we
canwrite the surface energy density of the disk and the energy
density of the halo can written as

𝜇 (𝑟) =
4𝛽𝑈
,𝑧

(𝛽 + 1) (1 − 𝑈)
(2𝛽+1)/(𝛽+1)

, (20)

𝜇
±

(𝑟, 𝑧) =

(𝑈
2

,𝑟
+ 𝑈
2

,𝑧
) 𝑒
2(1+2𝛽)𝜙

(1 + 𝛽)
2

𝑟2
{(2𝛽 + 𝛽

2

) 𝑟
2

−
(1 + 𝛽)

2

2𝑘2
𝑟
2

𝑒
−2𝜙

+
3𝑘
2

𝜔
(1 + 𝛽)

2

4
} ,

(21)

respectively. Moreover, we have a barotropic equation of state
on the surface of the disk, which can be given by 𝑃(𝑟) = 𝜂𝜇,
with 𝜂 = (1 − 𝛽)/3𝛽, in such a way that we can use the
energy conditions and the causality requirement for the speed
of sound on the disk to obtain the physical range of possible
values of the parameter 𝛽. Analogously, the pressure of the
halo is as follow: 𝑃±(𝑟, 𝑧) = Θ𝜇±(𝑟, 𝑧), where

Θ fl
(4 − 2𝛽 − 𝛽

2

) 𝑟
2

− ((1 + 𝛽)
2

/2𝑘
2

) 𝑟
2

𝑒
−2𝜙

+ (𝑘
2

𝜔
(1 + 𝛽)

2

/4) (1 + 3𝑘
2

𝜔
𝑟
−2

𝑈
2

𝑒
2𝛽𝜙

(1 − 𝑒
2𝜙

))

3 ((2𝛽 + 𝛽2) 𝑟2 − ((1 + 𝛽)
2

/2𝑘2) 𝑟2𝑒−2𝜙 + 3𝑘2
𝜔
(1 + 𝛽)

2

/4)

, (22)

in such away that the pressure of the halo depends not only on
the energy density but also on the gravitational and magnetic
fields through the functionΘ.The heat function of the disk is
given by

Q
𝛼
(𝑟) = −

𝑘
𝜔
𝑈
,𝑧

1 − 𝑈
𝛿
𝜑

𝛼
. (23)

Similarly, by inserting (15) into (16a), (16b), (16c), and (16d)
we obtain for the heat flux of the halo

Q
±

𝛼
=
𝑘
𝜔
𝑒
(1+2𝛽)𝜙

2 (1 + 𝛽) 𝑟
{2 (1 + 𝛽)𝑈

,𝑟

− (3 + 𝛽) 𝑟 (𝑈
2

,𝑟
+ 𝑈
2

,𝑧
) 𝑒
(1+𝛽)𝜙

} 𝛿
𝜑

𝛼
.

(24)

The nonzero components of the anisotropic tensor of the disk
read Π

𝜑𝜑
(𝑟) = 𝑟

2

Π
𝑟𝑟
(𝑟), where

Π
𝑟𝑟
(𝑟) =

2 (1 − 𝛽)𝑈
,𝑧

3 (1 + 𝛽) (1 − 𝑈)
1/(1+𝛽)

. (25)

Moreover, it is easy to see that the anisotropic tensor of the
halo reads

Π
±

𝛼𝛽
= 𝑃
±

𝑟
𝐼
𝛼
𝐼
𝛽
+ 𝑃
±

𝑧
𝐾
𝛼
𝐾
𝛽
+ 𝑃
±

𝜑
𝑌
𝛼
𝑌
𝛽
+ 2𝑃
±

𝑇
𝐼
(𝛼
𝐾
𝛽)
, (26)

where, 2𝐼
(𝛼
𝐾
𝛽)
= 𝐼
𝛼
𝐾
𝛽
+ 𝐼
𝛽
𝐾
𝛼
, as in the usual manner and

𝑃
±

𝑟
= 𝑒
2𝛽𝜙

Π
±

𝑟𝑟
,

𝑃
±

𝑧
= 𝑒
2𝛽𝜙

Π
±

𝑧𝑧
,

𝑃
±

𝜑
=
𝑒
2𝛽𝜙

𝑟2
Π
±

𝜑𝜑
,

𝑃
±

𝑇
= 𝑒
2𝛽𝜙

Π
±

𝑟𝑧
,

(27)

Π
±

𝑟𝑟
=

𝑒
2(1+𝛽)𝜙

3 (1 + 𝛽)
2

𝑟2
{(

𝑘
2

𝜔
(1 + 𝛽)

2

2

+
2 (1 + 𝛽)

2

𝑘2
𝑟
2

𝑒
−2𝜙

− 4 (1 + 𝛽 − 𝛽
2

) 𝑟
2

−
3𝑘
4

𝜔
(1 + 𝛽)

2

4
𝑟
−2

𝑈
2

𝑒
2𝛽𝜙

(1 − 𝑒
2𝜙

))𝑈
2

𝑟

+ (−𝑘
2

𝜔
(1 + 𝛽)

2

−
(1 + 𝛽)

2

𝑘2
𝑟
2

𝑒
−2𝜙

+ 2 (1 + 𝛽 − 𝛽
2

) 𝑟
2

−
3𝑘
4

𝜔
(1 + 𝛽)

2

4
𝑟
−2

𝑈
2

𝑒
2𝛽𝜙

(1 − 𝑒
2𝜙

))𝑈
2

𝑧
− 3 (1

− 𝛽
2

) 𝑟
2

𝑒
−(1+𝛽)𝜙

𝑈
,𝑟𝑟
} ,

(28a)

Π
±

𝑧𝑧
=

𝑒
2(1+𝛽)𝜙

3 (1 + 𝛽)
2

𝑟2
{(−𝑘

2

𝜔
(1 + 𝛽)

2

−
(1 + 𝛽)

2

𝑘2
𝑟
2

𝑒
−2𝜙

+ 2 (1 + 𝛽 − 𝛽
2

) 𝑟
2

−
3𝑘
4

𝜔
(1 + 𝛽)

2

4
𝑟
−2

𝑈
2

𝑒
2𝛽𝜙

(1 − 𝑒
2𝜙

))𝑈
2

𝑟

+ (
𝑘
2

𝜔
(1 + 𝛽)

2

2
+
2 (1 + 𝛽)

2

𝑘2
𝑟
2

𝑒
−2𝜙

− 4 (1 + 𝛽 − 𝛽
2

) 𝑟
2
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−
3𝑘
4

𝜔
(1 + 𝛽)

2

4
𝑟
−2

𝑈
2

𝑒
2𝛽𝜙

(1 − 𝑒
2𝜙

))𝑈
2

𝑧
− 3 (1

− 𝛽
2

) 𝑟
2

𝑒
−(1+𝛽)𝜙

𝑈
,𝑧𝑧
} ,

(28b)

Π
±

𝜑𝜑
=

(𝑈
2

,𝑟
+ 𝑈
2

,𝑧
) 𝑒
2(1+𝛽)𝜙

3 (1 + 𝛽)
2

{2 (1 + 𝛽 − 𝛽
2

) 𝑟
2

−
(1 + 𝛽)

2

𝑘2
𝑟
2

𝑒
−2𝜙

+
𝑘
2

𝜔
(1 + 𝛽)

2

2
(1

+ 3𝑘
2

𝜔
𝑟
−2

𝑈
2

𝑒
2𝛽𝜙

(1 − 𝑒
2𝜙

))} −
(1 − 𝛽)

1 + 𝛽

⋅ 𝑟𝑒
(1+𝛽)𝜙

𝑈
,𝑟
,

(28c)

Π
±

𝑟𝑧
=
𝑒
2(1+𝛽𝜙)

(1 + 𝛽)
2
{(−2 (1 + 𝛽 − 𝛽

2

) +
(1 + 𝛽)

2

𝑘2
𝑒
−2𝜙

+
𝑘
2

𝜔
(1 + 𝛽)

2

2𝑟2
)𝑈
,𝑟
𝑈
,𝑧
− (1 − 𝛽

2

) 𝑒
−(1+𝛽)𝜙

𝑈
,𝑟𝑧
} .

(28d)

Notice that P± ≡ 𝑃
±

𝑟
+ 𝑃
±

𝑧
+ 𝑃
±

𝜑
= 0 and, consequently, the

traceΠ±𝛼
𝛼
= 0. We have obtained expressions for the energy,

pressure, and the other quantities characterizing the dynamic
of the halo. All the dynamic quantities have been expressed in
terms of an arbitrary𝑈(𝑟, 𝑧)harmonic function. Finally, as we
know, the electric current density of the halo is zero whereas
it is easy to note that the magnetization current density on
surface of the disk is

𝑗 (𝑟) = −
[𝑈
,𝑟
]

𝑘 (1 − 𝑈)
3𝛽/(1+𝛽)

. (29)

It is important to remark that 𝑘
𝜔
is a defining constant in

(23) and (24). Indeed, when 𝑘
𝜔
= 0 the heat flux functions

Q
𝛼
and Q±

𝛼
vanish, a feature of the static systems. Because we

used the inverse method, no “a priori” restriction is imposed
on the physical properties of thematerial constituting the disk
and halo.Thenonzero components of the energy-momentum
tensors of the disk and halo result from “the nature” of the
chosen metric and the corresponding solutions. So, in our
case, the nonzero components 𝑆

𝑟𝑟
and 𝑆

𝑡𝜑
are conditioned

by the parameter 𝛽 and the metric function 𝜔 in such a
way that when 𝛽 = 1 the component 𝑆

𝑟𝑟
vanishes, whereas

𝑆
𝑡𝜑
= 0 when 𝜔 vanishes. The decomposition of the energy-

momentum tensor of the disk-halo system into (14) and (15)
was chosen with the aim of describing the SEMT and EMTH
by the more general fluid model. Hence, the heat flux appears
here in a “natural” way as a function determined by themetric
function 𝜔 and, consequently, by the “rotation.” Unfortu-
nately, as we can see from (17c) and (16c), this function is
oriented along the closed circular orbits and thus its physical
interpretation is unclear. It is an issue that remains unan-
swered in this paper but should be addressed in the future.

4. Rotating Kuzmin-Like Disk with
Magnetized Haloes

As an example of application of the formalism described
in the precedent sections, we now consider the magnetized
haloes surrounding the rotating disks generated by a general-
ization of the Kuzmin-disk potential in the form [57, 61]

𝑈 = −

𝑁

∑

𝑛=0

𝑏
𝑛
𝑃
𝑛
(𝑧/𝑅)

𝑅𝑛+1
,

𝑃
𝑛
(
𝑧

𝑅
) = (−1)

𝑛
𝑅
𝑛+1

𝑛!

𝜕
𝑛

𝜕𝑧𝑛
(
1

𝑅
) ,

(30)

where𝑃
𝑛
= 𝑃
𝑛
(𝑧/𝑅) is the Legendre polynomial in cylindrical

coordinates that was derived in the present form by a direct
comparison of the Legendre polynomial expansion of the
generating function with a Taylor series expansion of 1/𝑅
[62], being 𝑅2 ≡ 𝑟2 +𝑧2 and 𝑏

𝑛
arbitrary constant coefficients.

The corresponding magnetic potential, obtained from (13a)
and (13b), is

𝐴
𝜑
= −

1

𝑘

𝑁

∑

𝑛=0

𝑏
𝑛

(−1)
𝑛

𝑛!

𝜕
𝑛

𝜕𝑧𝑛
(
𝑧

𝑅
) , (31)

where we have imposed 𝐴
𝜑
(0, 𝑧) = 0 in order to preserve

the regularity of the axis of symmetry. Next, to introduce the
corresponding discontinuity in the first-order derivatives of
the metric potential and the magnetic potential required to
define the disk we perform the transformation 𝑧 → |𝑧| + 𝑎.
It is worth noting that, for the two first members of the family
of solutions (𝑁 = 0 and𝑁 = 1) we have

𝑈
0
= −

𝑏̃
0

√𝑟2 + (|𝑧̃| + 1)
2

, (32a)

𝐴
𝜑0
= −

𝑏̃
0
(|𝑧̃| + 1)

𝑘√𝑟2 + (|𝑧̃| + 1)
2

, (32b)

𝐴
𝜑1
= −

𝑏̃
0
(|𝑧̃| + 1)

𝑘√𝑟2 + (|𝑧̃| + 1)
2

{1

−
𝑏̃
1
𝑟
2

𝑏̃
0
(|𝑧̃| + 1) ((|𝑧̃| + 1)

2

+ 𝑟2)

} ,

(33a)

𝑈
1
= −

𝑏̃
0

√𝑟2 + (|𝑧̃| + 1)
2

{1 +
𝑏̃
1
(|𝑧̃| + 1)

𝑏̃
0
((|𝑧̃| + 1)

2

+ 𝑟2)

} , (33b)
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respectively, where 𝑏̃
0
= 𝑏
0
/𝑎 and 𝑏̃

1
= 𝑏
1
/𝑎
2 whereas 𝑟 = 𝑟/𝑎

and 𝑧̃ = 𝑧/𝑎;moreover𝐴
𝜑
= 𝐴
𝜑
/𝑎. For the twofirstmembers

of the family of solutions the surface energy density of the
disks can be written as

𝜇
0
=

4𝛽𝑏̃
0

(1 + 𝛽) (𝑟2 + 1)
(𝛽+2)/(2𝛽+2)

(𝑏̃
0
+ √𝑟2 + 1)

(2𝛽+1)/(𝛽+1)

, (34)

𝜇
1
=

4𝛽 {(𝑏̃
0
− 𝑏̃
1
) 𝑟
2

+ 𝑏̃
0
+ 2𝑏̃
1
}

(1 + 𝛽) (𝑟2 + 1)
(2−𝛽)/(2𝛽+2)

{(𝑟2 + 1)
3/2

+ 𝑏̃
0
(𝑟2 + 1) + 𝑏̃

1
}

(2𝛽+1)/(𝛽+1)

, (35)

respectively. Similarly, for the two first members of the family
we have the heat flux of the disks

𝑄
𝛼0
=

𝑏̃
0
𝑘
𝜔
𝛿
𝜑

𝛼

√𝑟2 + 1 + 𝑏̃
0

, (36a)

𝑄
𝛼1
=

𝑘
𝜔
𝛿
𝜑

𝛼
(𝑏̃
0
(𝑟
2

+ 1) + 𝑏̃
1
)

(𝑟2 + 1)
3/2

+ 𝑏̃
0
(𝑟2 + 1) + 𝑏̃

1

, (36b)

and the corresponding anisotropic tensor

Π̃
𝑟𝑟0

=
2 (1 − 𝛽) 𝑏̃

0

3 (1 + 𝛽) (√𝑟2 + 1 + 𝑏̃
0
)
1/(1+𝛽)

(𝑟2 + 1)
(3𝛽+2)/(2+2𝛽)

, (37a)

Π̃
𝑟𝑟1

=

2 (1 − 𝛽) ((𝑏̃
0
− 𝑏̃
1
) 𝑟
2

+ 𝑏̃
0
+ 2𝑏̃
1
)

3 (1 + 𝛽) {(𝑟2 + 1)
3/2

+ 𝑏̃
0
(𝑟2 + 1) + 𝑏̃

1
}

1/(1+𝛽)

(𝑟2 + 1)
(5𝛽+2)/(2+2𝛽)

. (37b)

As we know, other quantities are𝑃 = (1−𝛽)𝜇/(3𝛽) andΠ
𝜑𝜑
=

𝑟
2

Π
𝑟𝑟
. In the last expressions we have used the dimensionless

expressions 𝜇 = 𝑎𝜇, Π̃
𝜑𝜑

= 𝑎Π
𝑟𝑟
. Finally, for the two first

members of the family we have the current of magnetization
as

𝑗
0
= −

2𝑏̃
0
𝑟

𝑘 (𝑟2 + 1)
(3+𝛽)/(2+2𝛽)

(𝑏̃
0
+ √𝑟2 + 1)

2𝛽/(𝛽+1)

, (38a)

𝑗
1

= −

2𝑟 (𝑏̃
0
(𝑟
2

+ 1) + 3𝑏̃
1
)

𝑘 (𝑟2 + 1)
(5−𝛽)/(2+2𝛽)

{(𝑟2 + 1)
3/2

+ 𝑏̃
0
(𝑟2 + 1) + 𝑏̃

1
}

2𝛽/(1+𝛽)

,
(38b)

where 𝑗 = 𝑎𝑗 and we first have assumed that the 𝑧-derivative
of the magnetic potential presents a finite discontinuity
through the disk. In fact, aswe have said above, the derivatives
of𝑈 and𝐴

𝜑
are continuous functions across the surface of the

disk. We artificially introduce the discontinuity through the
transformation 𝑧 → |𝑧| + 𝑎.

It is worth noticing that themass surface density as well as
the isotropic pressure of the disk decays very rapidly (as 1/𝑟3
and 1/𝑟5 for𝑁 = 0 and𝑁 = 1, resp.) indicating that the above
solution can be associated with a disk with a finite energy-
momentum distribution. In every case, the characteristic size
can be adjusted through the parameters 𝑏

0
and 𝑏

1
of the

solutions. Moreover, a simple calculation of the curvature

invariants reveals that the solution is asymptotically flat and
singularity-free.

To illustrate the results corresponding to the principal
quantities describing the halo in Figure 1, we show the
behavior of energy densities 𝜇± on the halo as a function of 𝑟
and 𝑧. In each case, we plot 𝜇±

0
(𝑟, 𝑧) (Figure 1(a)) and 𝜇±

1
(𝑟, 𝑧)

(Figure 1(b)) for the indicated values of the parameters. It can
be seen that the energy density is everywhere positive and
vanishes sufficiently fast as 𝑟 increases.

In Figure 2, we show the behavior of pressure 𝑃± on
the halo as a function of 𝑟 and 𝑧. In each case, we plot
𝑃
±

0
(𝑟, 𝑧) (Figure 2(a)) and 𝑃

±

1
(𝑟, 𝑧) (Figure 2(b)) for the

indicated values of the parameters. We can see that pressure
is always positive and behaves as the energy density of the
halo. Thus, we can see that the behavior of these quantities
is in agreement with the results published in [53]. Moreover,
we also computed these functions for other values of the
parameters within the allowed range and in all cases we have
found a similar behavior.

4.1.The Constants of Motion. To proceed further, we evaluate
the constants of motion. Therefore, from (13c) we have

𝜙 =
1

1 + 𝛽
ln( 1

1 − 𝑈
) . (39)
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Figure 1: Surface plots of the energy densities (a) 𝜇±
0
and (b) 𝜇±

1
on the halo as functions depending on 𝑟 and 𝑧 with parameters 𝑎 = 𝑏

0
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=
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Figure 2: Surface plots of the pressures (a) 𝑃±
0
and (b) 𝑃±

1
on the halo as functions depending on 𝑟 and 𝑧 with parameters 𝑎 = 𝑏

0
= 𝑏
1
= 𝑘 =

𝑘
𝜔
= 1 and 𝛽 = 0.75.

Then, for solution (32a) we may write

𝜙
0
=

1

1 + 𝛽
ln(

√𝑅̃2 + 2 |𝑧̃| + 1

√𝑅̃2 + 2 |𝑧̃| + 1 + 𝑏̃
0

), (40)

where 𝑅̃2 ≡ 𝑟2 + 𝑧̃2. This follows that the metric potentials 𝑔
𝑡𝑡

and 𝑔
𝑡𝜑
for 𝑅 → ∞ in the disk (𝑧 = 0) become

𝑔
𝑡𝑡
≃ −1 +

2𝑏̃
0

(1 + 𝛽) 𝑅̃

−
𝑏̃
2

0
(3 + 𝛽)

(1 + 𝛽)
2

𝑅̃2
+ 𝑂(

1

𝑅̃3
) , (41a)

𝑔
𝑡𝜑
≃
𝑘
𝜔
𝑏̃
0

𝑅̃

−
2𝑘
𝜔
𝑏̃
2

0

(1 + 𝛽) 𝑅̃2
+ 𝑂(

1

𝑅̃3
) . (41b)

This implies, as is well known (see [41]), that the total mass-
energy of spacetime associated with the disk is

𝑀
0
=

𝑏
0

(1 + 𝛽)
. (42)
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On the other hand, in (𝑥, 𝑦, 𝑧) coordinates we find that

𝑔
01
≃ −

𝑘
𝜔
𝑏̃
0
𝑦

𝑅̃3
+ 𝑂(

1

𝑅̃4
) , (43a)

𝑔
02
≃
𝑘
𝜔
𝑏̃
0
𝑥

𝑅̃3
+ 𝑂(

1

𝑅̃4
) , (43b)

𝑔
03
≃ 𝑂(

1

𝑅̃4
) . (43c)

As an application, we use the same procedure as in [63] and
see that the angular momentum 𝐿

𝑀0
is in the 𝑧-direction and

is given by

𝐿
𝑀0

=
1

2
𝑘
𝜔
𝑏
0
. (44)

According to (32b) the magnetic field is

B
0
= −

𝑏̃
0
𝑟

𝑘 (𝑅̃2 + 2 |𝑧̃| + 1)
3/2

(𝑟e
𝑟
+ (𝑧̃ +

|𝑧̃|

𝑧̃
) e
𝑧
) , (45)

where e
𝛼
are unit basis vectors in cylindrical coordinates.

Accordingly, by expressing the components of the magnetic
field in Cartesian coordinates and taking the limit as𝑅 → ∞

of B
0
(𝑥, 𝑦, 𝑧) and by using formula (44.4) of Landau and

Lifshits [64] we may conclude that the magnetic momentum
may be written as

𝐿
𝐵0
=
𝑏
0

𝑘
. (46)

We thus see that constants 𝑘 and 𝑘
𝜔
define the gyromagnetic

ratio 𝐿
𝑀0
/𝐿
𝐵0
= (𝑘𝑘
𝜔
)/2.

5. Motion of a Charged Test Particle in the
Halo

The motion of a test particle of charge 𝑒 and mass 𝑚moving
in the halo is described by the following Lagrangian density:

L =
1

2
𝑔
𝛼𝛽
V𝛼V𝛽 +

𝑒

𝑚
𝐴
𝛼
𝑥
𝛼

, (47)

where 𝑔
𝛼𝛽

and 𝐴
𝛼
are, respectively, the components of the

metric and electromagnetic potential, given here by (13a),
(13b), (13c), and (13d).

The equations ofmotion of the test particle can be derived
from (47) by using the Euler-Lagrange equation. Then,

𝑑V𝛼

𝑑𝑠
+ Γ
𝛼

𝛽𝛾
V𝛽V𝛾 =

𝑒

𝑚
𝑔
𝛼𝜇

𝐹
𝜇𝜆
V𝜆. (48)

The velocity of the particle asmeasured by the local observers
is given by V𝛼 = V𝑡(𝑡𝛼 + Ω𝜑𝛼), where

V𝑡 = (1 − 𝑈)
1/(1+𝛽)

(1 + 𝑘
𝜔
𝑈Ω)√1 − V2

. (49)

Here, the 3-velocity V and the angular velocity Ω of the
particle as measured by the local observers are given by

V =
𝑟Ω (1 − 𝑈)

1 + 𝑘
𝜔
𝑈Ω

, (50)

Ω

=

𝑘
𝜔
(𝑈
2

,𝑟
+ 𝑈
2

,𝑧
) ((1 + 𝛽) + 2𝑈/ (1 − 𝑈)) ± √(𝑈

2

,𝑟
+ 𝑈2
,𝑧
)𝐷

2 (1 + 𝛽) 𝑟 (1 − 𝑈)
2

𝑈
,𝑟
− 2 (𝑈2

,𝑟
+ 𝑈2
,𝑧
)𝐴

,

𝐷

= 4 (1 + 𝛽) 𝑟 (1 − 𝑈)𝑈
,𝑟

+ (𝑈
2

,𝑟
+ 𝑈
2

,𝑧
) (𝑘
2

𝜔
(1 + 𝛽)

2

− 4𝛽𝑟
2

) ,

𝐴 = 𝛽𝑟
2

(1 − 𝑈) + 𝑘
2

𝜔
𝑈(1 + 𝛽 +

𝑈

1 − 𝑈
) ,

(51)

respectively. All the quantities depend on 𝑟 and 𝑧. In
Figures 3(a) and 4(a) we show the behavior of the velocities
V2
0
and V2
1
of a charged particle following “magnetogeodesic”

motion on the halo for the values of indicated parameters,
respectively. Additionally, in Figures 3(b) and 4(b), we plot
the 𝑧-slices of the surface plot of the velocity and V2

0
and V2

1

for the indicated values of the parameters, respectively.These
curves are obtained via vertical slices of the surface V2 =

V2(𝑟, 𝑧) (a vertical slice is a curve formed by the intersection
of the surface V2 = V2(𝑟, 𝑧) with the vertical planes). For each
curve, we can see that the velocity is always less than 1, its
maximum occurs around 𝑟 = 0, and it vanishes sufficiently
fast as 𝑟 increases. It can also be observed that the maximum
of the velocity decreases as the values of 𝑧 increase. We also
computed these functions for other values of the parameters
within the allowed range and in all cases we found a similar
behavior. Naturally, the description of the motion of charged
particles on disk here deduced is in agreementwith the results
of analysis of the magnetogeodesic motion of the particle in
the magnetized disks discussed in [59].

6. Conclusions

We used the formalism presented in [54] to model an exact
relativistic rotating disk surrounded by a magnetized halo.
The model was obtained by solving the Einstein-Maxwell
distributional field equations. In doing so, we introduced an
auxiliary harmonic function that determines the functional
dependence of the metric components and the electromag-
netic potential. Accordingly, we separated the total energy-
momentum tensor of the system disk-halo. Additionally,
we expressed the energy-momentum tensor of the halo as
a sum of two distributional contributions, one due to the
electromagnetic part and the other due to a material part.
As we can see, because the spacetime here considered is
nonstatic (conformastationary), the distributional approach
of the Einstein-Maxwell equations allows us to work with a
strongly nonlineal partial equations system. We considered,
for simplicity, the astrophysical consistent case in that there
is no electric charge on the halo. We obtained that the charge
density on the disk is zero.
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Figure 3: Surface plot of the velocity (a) V2
0
and 𝑧-slices of the surface plot of the velocity (b) on the halo as functions depending on 𝑟 and 𝑧
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Figure 4: Surface plot of the velocity (a) V2
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and 𝑧-slices of the surface plot of the velocity (b) on the halo as functions depending on 𝑟 and 𝑧

with parameters 𝑎 = 𝑏
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1
= 𝑘 = 𝑘

𝜔
= 1 and 𝛽 = 0.75.

In order to analyze the physical content of the energy-
momentum tensor of the halo and disk, we projected each
tensor, in the canonical form, in the comoving frame defined
by the local observers tetrad. This analysis allowed us to give
a complete dynamical description of the system in terms
of two parameters (i.e., 𝛽 and 𝑘

𝜔
) which determine the

matter content of the sources. Indeed, the parameter 𝛽 in
the metric vanishes when it is equal to the isotropic pressure
and the anisotropic tensor on the material constituting the
disk. Similarly, when the parameter 𝑘

𝜔
is equal to zero

the heat flux on the disk and halo vanishes, a feature of
the static systems. So, in this paper we presented, for first
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time, the complete analysis of the most general energy-
momentum tensor of a disk-haloes system obtained from
exact conformastationary axially symmetric solutions of the
Einstein-Maxwell equations.

The expressions obtained here are the generalization
of the expressions obtained for the conformastatic disk-
haloes without isotropic pressure, stress tensor, or heat flow
presented in [54]. Moreover, when we take simultaneously
𝑘
𝜔
= 0 and 𝛽 = 1, we obtain the corresponding electrized

disk-haloes version. Furthermore, our results are compatible
with the description of the relativistic models of perfect
fluid disks in a magnetic field presented in [59] and the
halo presented in [53]. Furthermore, we have shown that the
description of the motion of charged particles on the disk is
in agreement with the results of analysis of particles motion
in the magnetized disks discussed in [59]. In accordance with
the results presented in [53, 65], it is also worth noticing that
one can fix the values of the parameters𝛽, 𝑘

𝜔
, and 𝑏

𝑛
as well as

the number of members of the particular solutions presented
here in order to have velocity increasing linearly with radius
of the disk.

We have considered specific solutions in which the gravi-
tational andmagnetic potential are completely determined by
a “generalization” of the Kuzmin-disk potential. Accordingly,
we have generated relativistic exact solutions for magnetized
haloes surrounding rotating disks from a Newtonian grav-
itational potential of a static axisymmetric distribution of
matter.The solution obtained is asymptoticallyMinkowskian
in general and turns out to be free of singularities.

In short, we concluded that we have presented a well-
behaved exact general relativistic rotating disk surrounded by
a well-behaved magnetized “material” halo. In our descrip-
tion we do not impose restriction on the kind of “material”
constituting the system disk-halo. Consequently, we can
speculate that the halo could be made of magnetized dark
matter. This work provides a solid footing to refine future
studies of relativistic disk-haloes systems and applications, for
example, relativistic generalization of alpha-effect which will
be discussed somewhere.

Appendix

The Local Observers

We write metric (7) in the form

𝑑𝑠
2

= −𝐹 (𝑑𝑡 + 𝜔𝑑𝜑)
2

+ 𝐹
−𝛽

[𝑑𝑟
2

+ 𝑑𝑧
2

+ 𝑟
2

𝑑𝜑
2

] , (A.1)

where we have rewritten 𝐹 = 𝑒
2𝜙. In addition, we define the

tetrad of the local observers ℎ(𝛼)
𝜇
, in which the metric has

locally the form of Minkowskian metric

𝑑𝑠
2

= 𝜂
(𝜇)(])h

(𝜇)

⊗ h(]) (A.2)

and is given by

ℎ
(𝑡)

𝛼
= 𝐹
1/2

{1, 0, 0, 𝜔} , (A.3a)

ℎ
(𝑟)

𝛼
= 𝐹
−𝛽/2

{0, 1, 0, 0} , (A.3b)

ℎ
(𝑧)

𝛼
= 𝐹
−𝛽/2

{0, 0, 1, 0} , (A.3c)

ℎ
(𝜑)

𝛼
= 𝐹
−𝛽/2

{0, 0, 0, 𝑟} . (A.3d)

The dual tetrad reads

ℎ
(𝑡)

𝛼

= 𝐹
−1/2

{1, 0, 0, 0} , (A.4a)

ℎ
(𝑟)

𝛼

= 𝐹
𝛽/2

{0, 1, 0, 0} , (A.4b)

ℎ
(𝑧)

𝛼

= 𝐹
𝛽/2

{0, 0, 1, 0} , (A.4c)

ℎ
(𝜑)

𝛼

=
𝐹
𝛽/2

𝑟
{−𝜔, 0, 0, 1} . (A.4d)

The circular velocity of the system disk-halo can be
modelled by a fluid spacetime whose circular velocity𝑉𝛼 can
be written in terms of two Killing vectors 𝑡𝛼 and 𝜑𝛼:

𝑉
𝛼

= 𝑉
𝑡

(𝑡
𝛼

+ Ω𝜑
𝛼

) , (A.5)

where

Ω ≡
𝑢
𝜑

𝑢𝑡
=
𝑑𝜑

𝑑𝑡
(A.6)

is the angular velocity of the fluid as seen by an observer at rest
at infinity.The velocity satisfies the normalization𝑉

𝛼
𝑉
𝛼

= −1.
Accordingly, for metric (A.1) we have

(𝑉
𝑡

)
2

=
1

−𝑡𝛼𝑡
𝛼
− 2Ω𝑡𝛼𝜑

𝛼
− Ω𝜑𝛼𝜑

𝛼

, (A.7)

with

𝑡
𝛼

𝑡
𝛼
= 𝑔
𝑡𝑡
= −𝐹, (A.8a)

𝑡
𝛼

𝜑
𝛼
= 𝑔
𝑡𝜑
= −𝜔𝐹, (A.8b)

𝜑
𝛼

𝜑
𝛼
= 𝑔
𝜑𝜑
= 𝑟
2

𝐹
−𝛽

(1 − 𝐹
1+𝛽

𝜔
2

𝑟2
) , (A.8c)

and consequently we write the velocity as

𝑉
𝑡

=
1

𝐹1/2 (1 + 𝜔Ω)√1 − 𝑉
2

LOC

, (A.9)

where

𝑉LOC ≡
𝑟Ω

𝐹(1+𝛽)/2 (1 + 𝜔Ω)
(A.10)

is the velocity as measured by the local observers.
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Cervantes, “Relativistic static thin dust disks with an inner edge:
an infinite family of new exact solutions,” Physical ReviewD, vol.
79, no. 12, Article ID 124048, 2009.

[18] D. Lynden-Bell and S. Pineault, “Relativistic disks—II. Self-
similar disks in rotation,” Monthly Notices of the Royal Astro-
nomical Society, vol. 185, no. 4, pp. 695–712, 1978.
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symmetric relativistic thin discs with nonzero radial pressure,”
Classical andQuantumGravity, vol. 29, no. 13, Article ID 135001,
2012.

[23] J. P. S. Lemos and P. S. Letelier, “Superposition of MORgan and
MORgan discs with a Schwarzschild black hole,” Classical and
Quantum Gravity, vol. 10, no. 6, pp. L75–L78, 1993.

[24] J. P. S. Lemos and P. S. Letelier, “Exact general relativistic thin
disks around black holes,” Physical Review D, vol. 49, no. 10, pp.
5135–5143, 1994.

[25] J. P. Lemos and P. S. Letelier, “Two families of exact disks with
a central black hole,” International Journal of Modern Physics
D: Gravitation, Astrophysics, Cosmology, vol. 5, no. 1, pp. 53–63,
1996.
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