8 research outputs found
Fully Isohexide-Based Polyesters: Synthesis, Characterization, and Structure-Properties Relations
Here we present a novel series of biobased polyesters solely based on renewable isohexide building blocks, synthesized via melt polymerization. The recently developed isoidide dicarboxylic acid (IIDCA) was polymerized with rigid renewable diols such as isosorbide (IS), isomannide (IM), isoidide (II), and the novel 2,5-methylene-extended isoidide dimethanol (IIDML). Both IIDCA and IIDML were developed to increase the reactivity of the isohexide building block, while retaining rigidity and hence the beneficial effects on Tg. Compared to the parent isohexides, IIDML showed a markedly higher reactivity, resulting in three to four times higher weight-average molecular weight (Mw) values of the synthesized polyesters. The molecular structure of the novel polyesters was analyzed by 1H, 13C and 2D-COSY NMR techniques, confirming that the stereoconfigurations of the isohexide moieties were preserved under the applied polymerization conditions. The II/IS-based polyesters have high Tg values noted of 70 and 85 °C, respectively, while the IIDML-based polyester has a lower Tg of approximately 45 °C, yet with an higher degree of crystallinity than the parent isohexide-based polyesters. A systematic study on structure-thermal properties relations comparing these novel polyesters with, e.g., aliphatic polyesters reveals that, when incorporated into polyesters, both IIDCA and IIDML are able to increase the Tg by approximately 70 °C, which is comparable to the parent isohexides. Given the enhanced reactivity, high thermal stability and the retained ability to increase the Tg, IIDML is a promising renewable building block for performance polymers
Structure and molecular dynamics in renewable polyamides from dideoxy-diamino isohexide
The chemical structure, the conformation, and the flexibility of the polymer chain fragments present in the polyamides synthesized from 2,5-diamino-2,5-dideoxy-1,4;3,6-dianhydrosorbitol, 1,4-diaminobutane, and either sebacic or brassylic acid have been studied by liquid-state 2D NMR spectroscopy viz. correlation spectra (COSY) and heteronuclear multiple-bond correlation spectra (gHMBC), by 13C cross-polarization/magic-angle spinning (CP/MAS) NMR, by X-ray scattering, and by FT-IR spectroscopy. The presence of 2,5-diamino-2,5-dideoxy-1,4;3,6-dianhydrosorbitol in the crystal phase of the polyamides was probed by wide-angle X-ray diffraction (WAXD), FT-IR, and solid-state 13C NMR. The incorporation of dideoxy–diamino isohexide into the backbone of PA 4.10 or PA 4.13 induces formation of gauche type conformers and gives rise to pseudohexagonal packing of the polymer chains in these semicrystalline copolymers. The experimental determination of the polymer chain structure combined with ab initio calculations revealed the presence of three most abundant diaminoisosorbide (DAIS) conformers. The combination of the 13C chemical shifts of these three conformers could explain all experimental resonances in the region of 50–90 ppm. WAXD and DSC analysis show that the crystallinity, and hence the physical properties of the investigated compositions, can be tailored by the content of the bicyclic diamine in the backbone of the polyamide