7 research outputs found

    Effectiveness of interventions to support the early detection of skin cancer through skin self-examination: a systematic review and meta-analysis.

    Get PDF
    BACKGROUND: As skin cancer incidence rises, there is a need to evaluate early detection interventions by the public using skin self-examination (SSE); however, the literature focuses on primary prevention. No systematic reviews have evaluated the effectiveness of such SSE interventions. OBJECTIVES: To systematically examine, map, appraise and synthesize, qualitatively and quantitatively, studies evaluating the early detection of skin cancer, using SSE interventions. METHODS: This is a systematic review (narrative synthesis and meta-analysis) examining randomized controlled trials (RCTs) and quasiexperimental, observational and qualitative studies, published in English, using PRISMA and National Institute for Health and Care Excellence guidance. The MEDLINE, Embase and PsycINFO databases were searched through to April 2015 (updated in April 2018 using MEDLINE). Risk-of-bias assessment was conducted. RESULTS: Included studies (n = 18), totalling 6836 participants, were derived from 22 papers; these included 12 RCTs and five quasiexperiments and one complex-intervention development. More studies (n = 10) focused on targeting high-risk groups (surveillance) than those at no higher risk (screening) (n = 8). Ten (45%) study interventions were theoretically underpinned. All of the study outcomes were self-reported, behaviour related and nonclinical in nature. Meta-analysis demonstrated the impact of the intervention on the degree of SSE activity from five studies, especially in the short term (up to 4 months) (odds ratio 2·31, 95% confidence interval 1·90-2·82), but with small effect sizes. Risk-of-bias assessment indicated that 61% of the studies (n = 11) were of weak quality. CONCLUSIONS: Four RCTs and a quasiexperimental study indicate that some interventions can enhance SSE activity and so are more likely to aid early detection of skin cancer. However, the actual clinical impact remains unclear, and this is based on overall weak study (evidence) quality

    An improved chamber for direct visualisation of chemotaxis.

    Get PDF
    There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key attributes that a chemotaxis chamber should have for investigating cancer cell chemotaxis. These include (1) compatibility with thin cover slips for optimal optical properties and to allow use of high numerical aperture (NA) oil immersion objectives; (2) gradients that are relatively stable for at least 24 hours due to the slow migration of cancer cells; (3) gradients of different steepnesses in a single experiment, with defined, consistent directions to avoid the need for complicated analysis; and (4) simple handling and disposability for use with medical samples. Here we describe and characterise the Insall chamber, a novel direct visualisation chamber. We use it to show GFP-lifeact transfected MV3 melanoma cells chemotaxing using a 60x high NA oil immersion objective, which cannot usually be done with other chemotaxis chambers. Linear gradients gave very efficient chemotaxis, contradicting earlier results suggesting that only polynomial gradients were effective. In conclusion, the chamber satisfies our design criteria, most importantly allowing high NA oil immersion microscopy to track chemotaxing cancer cells in detail over 24 hours

    Measuring chemotaxis using direct visualization microscope chambers

    No full text
    Direct visualization chambers are considered the gold standard for measuring and analyzing chemotactic responses, because they allow detailed analysis of cellular behavior during the process of chemotaxis. We have previously described the Insall chamber, an improved chamber for measuring cancer cell chemotaxis. Here, we describe in detail how this system can be used to perform two key assays for both fast- and slow-moving mammalian and nonmammalian cell types. This allows for the detailed analysis of chemotactic responses in linear gradients at the levels of both overall cell behavior and subcellular dynamics
    corecore