19 research outputs found

    Overview of the JET results in support to ITER

    Get PDF

    Giardia and Cryptosporidium in harp and hooded seals from the Gulf of St. Lawrence, Canada

    Get PDF
    Giardia and Cryptosporidium are protozoan parasites known to cause enteric disease in terrestrial wildlife species (mammals, reptiles and birds). Few surveys for Giardia and Cryptosporidium in marine wildlife species, such as pinnipeds, have been reported. The objective of this study was to determine the prevalence and genotype of Giardia and Cryptosporidium in two species of pinnipeds, harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata), from the Gulf of St. Lawrence, Canada. Faecal samples were collected from pup and adult seals and examined for the presence of cysts of Giardia and oocysts of Cryptosporidium using microscopy and immunofluorescent staining. Tissues from the small intestine of adult seals were also collected and examined for infections using the polymerase chain reaction (PCR) technique. Giardia cysts were found in the faeces of 42% (16/38) of adult harp seals, but in none of the harp seal pups (0/20). Although Giardia cysts were not detected in faeces of adult hooded seals (0/10) using microscopy, 80% tested positive for Giardia using PCR of intestinal tissue indicative of a true replicating infection. Both harp and hooded seals harboured infections with the zoonotic strain, Giardia duodenalis Assemblage A, as determined using a nested-PCR technique to amplify a small subunit ribosomal (SSU-rRNA) gene of Giardia. Cryptosporidium was not detected by microscopy, nor using the PCR technique on intestinal tissues from any of the 68 seals examined

    Giardia and Cryptosporidium in mammalian wildlife – current status and future needs

    No full text
    Environmental pollution with human and domestic-animal fecal material is recognized as a potential pathogen pathway for wildlife infections with zooanthropomorphic protozoan parasites such as Giardia and Cryptosporidium. In this article, we review current knowledge about the diversity of free-living and captive terrestrial and marine mammalian wildlife species infected with Giardia and Cryptosporidium. The combination of prevalence studies with modern molecular-genotyping techniques is providing valuable insights into the host specificity and possible transmission routes of these two important parasites

    The molecular epidemiology of Cryptosporidium and Giardia infections in coyotes from Alberta, Canada, and observations on some cohabiting parasites

    Get PDF
    Coyotes from southern Alberta and Saskatchewan, Canada, were examined for the presence of Giardia and Cryptosporidium and cohabiting helminths. Toxascaris was present in over 90% of the 70 animals examined, and Taenia sp. in 6.5-25% of the two groups of animals studied. Giardia (12.5-21.7%) and Cryptosporidium (0-17.4%) were also common and molecular characterisation revealed both zoonotic and host-adapted genotypes of Giardia, whereas the Cryptosporidium proved to be a variant of the canine species C. canis. The seasonal variation observed in the occurrence of Cryptosporidium may be related to stress-induced shedding of the parasite

    Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

    No full text
    © 2022, The Author(s), under exclusive licence to Springer Nature Limited.Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.N
    corecore