1,553 research outputs found

    Simulating the use of macro-actions through action reordering

    Get PDF
    The use of macro-actions in planning introduces a trade-off.. Macro-actions can offer search guidance by suggesting sequences of actions; but can potentially make search more expensive by increasing the branching factor. In this paper we present a technique for simulating the use of macro actions by altering the order in which actions are considered for application during enforced hill-climbing search. Actions are ordered based on the number of times they have occurred, in past solution plans, following the last action added to the plan. We demonstrate that the action-reordering technique used can offer improved search performance without the negative performance impacts often observed when using macro-actions

    Planning in probabilistic domains using a deterministic numeric planner

    Get PDF
    In the probabilistic track of the IPC5 - the last International planning competitions - a probabilistic planner based on combining deterministic planning with replanning - FF-REPLAN - out performed the other competitors. This probabilistic planning paradigm discarded the probabilistic information of the domain, just considering for each action its nominal effect as a deterministic effect

    Characterization of biofilm formation in clinical urinary isolates of Staphylococcus aureus from five hospitals in Lagos State, Nigeria

    Get PDF
    Background: Biofilm formation by pathogens is of great clinical importance as it mediates persistence and resistance to antibiotics, hence posing difficulty in treatment and management of diseases. The aim of this study was to evaluate the biofilm forming potential of Staphylococcus aureus isolated from urine samples of females with urinary tract infection and to detect the presence of clumping factor (clfA) and intracellular adhesion (icaA) encoding genes.Methodology: A total of 50 S. aureus were obtained from urine samples of women in five hospitals in Lagos State, Nigeria. Isolates were confirmed by standard biochemical and novobiocin susceptibility tests. The isolates were screened for biofilm formation using three methods; Congo-red agar (CRA), tube, and tissue culture plate (TCP) methods. Detection of clfA and icaA genes was done by PCR.Results: The Congo red agar method showed that 39 (78%) of the isolates were biofilm producers while 11 (22%) were non-biofilm producers. However, the tube method indicated that 12 (24%) were strong biofilm producers, 26 (52%) were moderate biofilm producers, and 12 (24%) were non-biofilm producers. The standard TCP assay showed that strong biofilm producers (OD > 0.240) were 13 (26%), moderate biofilm producers were 22 (44%), and weak or non-biofilm producers (OD < 0.120) were 15 (30%). The tube method showed a good correlation with the TCP method for strong biofilm production. Ten (20%) isolates possessed clfA gene and 31 (62%)possessed icaA gene.Conclusion: The ability of S. aureus to form biofilm is a key risk factor that can increase morbidity and mortality from infections they cause. Hence, rapid and sensitive phenotypic methods can be used in screening for biofilm formation thereby providing data that can guide therapy and control of the pathogen. Keywords: Staphylococcus aureus, Biofilm, Clumping factor, Intracellular adhesio

    Universality classes in nonequilibrium lattice systems

    Full text link
    This work is designed to overview our present knowledge about universality classes occurring in nonequilibrium systems defined on regular lattices. In the first section I summarize the most important critical exponents, relations and the field theoretical formalism used in the text. In the second section I briefly address the question of scaling behavior at first order phase transitions. In section three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and the percolation behavior. The main body of this work is given in section four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In section five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of the known nonequilibrium transition classes are explored in low dimensions between active and absorbing states of reaction-diffusion type of systems. However by mapping they can be related to universal behavior of interface growth models, which I overview in section six. Finally in section seven I summarize families of absorbing state system classes, mean-field classes and give an outlook for further directions of research.Comment: Updated comprehensive review, 62 pages (two column), 29 figs included. Scheduled for publication in Reviews of Modern Physics in April 200

    Scintillation Pulse Shape Discrimination in a Two-Phase Xenon Time Projection Chamber

    Full text link
    The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to obtain a leakage below that achievable by either discriminant alone. A Monte Carlo is used to show that the dominant fluctuation in the pulse shape quantity is statistical in nature, and project the performance of these techniques in larger detectors. Although the performance is generally weak at low energies relevant to elastic WIMP recoil searches, the pulse shape can be used in probing for higher energy inelastic WIMP recoils.Comment: 7 pages, 11 figure

    A note on cluster methods for strongly correlated electron systems

    Full text link
    We develop, clarify and test various aspects of cluster methods dynamical mean field methods using a soluble toy model as a benchmark. We find that the Cellular Dynamical Mean Field Theory (C-DMFT) converges very rapidly and compare its convergence properties with those of the Dynamical Cluster Approximation (DCA). We propose and test improved estimators for the lattice self energy within C-DMFT.Comment: 5 pages, 3 figures; major change

    HR4049: signature of nova nucleosynthesis ?

    Full text link
    The post-Asymptotic Giant Branch (AGB) star HR4049 is in an eccentric binary system with a relatively short period probably surrounded by a dusty circumbinary disk. Extremely anomalous oxygen isotopic ratios, O16/O17 ~ O16/O18 ~ 7, have been measured from CO_2 molecules likely residing in the disk. Such a composition cannot be explained in the framework of AGB and post-AGB evolution while it can be qualitatively associated with the nucleosynthesis occurring during nova outbursts. We discuss nova models, the presence of a white dwarf companion to HR4049 and possible scenarios for the dynamical evolution of this binary system. Circumbinary disks in which mixing occurs between red-giant and nova material may also be invoked as the site of formation of some rare types of meteoritic presolar grains.Comment: 4 pages, 2 figures, submitted for the proceedings of the 8th Nuclei in the Cosmos symposium (Vancouver, Canada, 19-23 July 2004

    Signature of stripe pinning in optical conductivity

    Get PDF
    The response of charge stripes to an external electric field applied perpendicular to the stripe direction is studied within a diagrammatic approach for both weak and strong pinning by random impurities. The sound-like mode of the stripes described as elastic strings moves to finite frequency due to impurity pinning. By calculating the optical conductivity we determine this characteristic energy scale for both a single stripe and an array of interacting stripes. The results explain the anomalous far-infrared peak observed recently in optical-conductivity measurements on cuprates.Comment: Revised version, to appear in Phys. Rev.

    Larmor precession and tunneling time of a relativistic neutral spinning particle through an arbitrary potential barrier

    Get PDF
    The Larmor precession of a relativistic neutral spin-1/2 particle in a uniform constant magnetic field confined to the region of a one-dimensional arbitrary potential barrier is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle traversing a potential barrier. With the help of general spin coherent state it is explicitly shown that the precession time is equal to the dwell time.Comment: 10 pages, 1 figure. To be published in Phys. Rev. A (01 February 2002

    The role of insulin receptor substrate 2 in hypothalamic and β cell function

    Get PDF
    Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in β cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and β cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced β cell mass. Overt diabetes did not ensue, because β cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced β cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in β cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis
    corecore