744 research outputs found

    Loss allocation in a distribution system with distributed generation units

    Get PDF
    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system in Brønderslev in Northern Jutland, including measurement data, has been studied

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    Anomaly-Free Gauged R-Symmetry in Local Supersymmetry

    Get PDF
    We discuss local \R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1)U(1) \R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged \R-symmetry. For the standard superpotential these equations have {\it no} solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3)cSU(3)_c octet chiral superfield. We consider in detail the conditions for an anomaly-free {\it family dependent} U(1)R U(1)_R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of order the weak-scale. For these solutions we consider the spontaneous breaking of supersymmetry and the RR-symmetry in the context of local supersymmetry. In general the U(1)RU(1)_R gauge group is broken at or close to the Planck scale. We consider the effects of the \R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved \R-symmetry and conserved \R-parity. For conserved \R-symmetry we have models for all possibilities of conserved or broken \R-parity. Most models predict dominant effects which could be observed at HERA.Comment: 29 pages, latex, including 3 tables. Final version accepted for publication in NPB. Slight revision of supersymmetry breaking and dropped sub-section on mu problem, which will appear expaned elsewher

    Dynamical measure and field theory models free of the cosmological constant problem

    Get PDF
    Summary of abstract Field theory models including gauge theories with SSB are presented where the energy density of the true vacuum state (TVS) is zero without fine tuning. The above models are constructed in the gravitational theory where a measure of integration \Phi in the action is not necessarily \sqrt{-g} but it is determined dynamically through additional degrees of freedom. The ratio \Phi/\sqrt{-g} is a scalar field which can be solved in terms of the matter degrees of freedom due to the existence of a constraint. We study a few explicit field theory models where it is possible to combine the solution of the cosmological constant problem with: 1) possibility for inflationary scenario for the early universe; 2) spontaneously broken gauge unified theories (including fermions). The models are free from the well known problem of the usual scalar-tensor theories in what is concerned with the classical GR tests. The only difference of the field equations in the Einstein frame from the canonical equations of the selfconsistent system of Einstein's gravity and matter fields, is the appearance of the effective scalar field potential which vanishes in TVS without fine tuning.Comment: Extended version of the contribution to the fourth Alexander Friedmann International Seminar on Gravitation and Cosmology; accepted for publication in Phys. Rev. D; 31 page
    • …
    corecore