49 research outputs found
Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds
We consider the most general three-state spin chain with U(1)^3 symmetry and
nearest neighbour interaction. Our model contains as a special case the spin
chain describing the holomorphic three scalar sector of the three parameter
complex deformation of N=4 SYM, dual to type IIB string theory in the
generalized Lunin-Maldacena backgrounds discovered by Frolov. We formulate the
coordinate space Bethe ansatz, calculate the S-matrix and determine for which
choices of parameters the S-matrix fulfills the Yang-Baxter equations. For
these choices of parameters we furthermore write down the R-matrix. We find in
total four classes of integrable models. In particular, each already known
model of the above type is nothing but one in a family of such models.Comment: 16 pages, 3 figures, references correcte
Donor Centers and Absorption Spectra in Quantum Dots
We have studied the electronic properties and optical absorption spectra of
three different cases of donor centers, D^{0}, D^{-} and D^{2-}, which are
subjected to a perpendicular magnetic field, using the exact diagonalization
method. The energies of the lowest lying states are obtained as function of the
applied magnetic field strength B and the distance zeta between the positive
ion and the confinement xy-plane. Our calculations indicate that the positive
ion induces transitions in the ground-state, which can be observed clearly in
the absorption spectra, but as zeta goes to 0 the strength of the applied
magnetic field needed for a transition to occur tends to infinity.Comment: 5 pages, 4 figures, REVTeX 4, gzipped tar fil
Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet
The exact expression derived by Bougourzi, Couture, and Kacir for the
2-spinon contribution to the dynamic spin structure factor
of he one-dimensional =1/2 Heisenberg antiferromagnet at is evaluated
for direct comparison with finite-chain transition rates () and an
approximate analytical result previously inferred from finite- data, sum
rules, and Bethe-ansatz calculations. The 2-spinon excitations account for
72.89% of the total intensity in . The singularity structure
of the exact result is determined analytically and its spectral-weight
distribution evaluated numerically over the entire range of the 2-spinon
continuum. The leading singularities of the frequency-dependent spin
autocorrelation function, static spin structure factor, and -dependent
susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript
Nucleon Polarizabilities from Deuteron Compton Scattering within a Green's-Function Hybrid Approach
We examine elastic Compton scattering from the deuteron for photon energies
ranging from zero to 100 MeV, using state-of-the-art deuteron wave functions
and NN-potentials. Nucleon-nucleon rescattering between emission and absorption
of the two photons is treated by Green's functions in order to ensure gauge
invariance and the correct Thomson limit. With this Green's-function hybrid
approach, we fulfill the low-energy theorem of deuteron Compton scattering and
there is no significant dependence on the deuteron wave function used.
Concerning the nucleon structure, we use Chiral Effective Field Theory with
explicit \Delta(1232) degrees of freedom within the Small Scale Expansion up to
leading-one-loop order. Agreement with available data is good at all energies.
Our 2-parameter fit to all elastic data leads to values for the
static isoscalar dipole polarizabilities which are in excellent agreement with
the isoscalar Baldin sum rule. Taking this value as additional input, we find
\alpha_E^s= (11.3+-0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and \beta_M^s =
(3.2-+0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and conclude by comparison to the
proton numbers that neutron and proton polarizabilities are essentially the
same.Comment: 47 pages LaTeX2e with 20 figures in 59 .eps files, using graphicx.
Minor modifications; extended discussion of theoretical uncertainties of
polarisabilities extraction. Version accepted for publication in EPJ
Critical Dynamics of Magnets
We review our current understanding of the critical dynamics of magnets above
and below the transition temperature with focus on the effects due to the
dipole--dipole interaction present in all real magnets. Significant progress in
our understanding of real ferromagnets in the vicinity of the critical point
has been made in the last decade through improved experimental techniques and
theoretical advances in taking into account realistic spin-spin interactions.
We start our review with a discussion of the theoretical results for the
critical dynamics based on recent renormalization group, mode coupling and spin
wave theories. A detailed comparison is made of the theory with experimental
results obtained by different measuring techniques, such as neutron scattering,
hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and
magnetic relaxation, in various materials. Furthermore we discuss the effects
of dipolar interaction on the critical dynamics of three--dimensional isotropic
antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a
discussion of the consequences of dipolar anisotropies on the existence of
magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and
antiferromagnets. We close our review with a formulation of critical dynamics
in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included
New exact solution of Dirac-Coulomb equation with exact boundary condition
It usually writes the boundary condition of the wave equation in the Coulomb
field as a rough form without considering the size of the atomic nucleus. The
rough expression brings on that the solutions of the Klein-Gordon equation and
the Dirac equation with the Coulomb potential are divergent at the origin of
the coordinates, also the virtual energies, when the nuclear charges number Z >
137, meaning the original solutions do not satisfy the conditions for
determining solution. Any divergences of the wave functions also imply that the
probability density of the meson or the electron would rapidly increase when
they are closing to the atomic nucleus. What it predicts is not a truth that
the atom in ground state would rapidly collapse to the neutron-like. We
consider that the atomic nucleus has definite radius and write the exact
boundary condition for the hydrogen and hydrogen-like atom, then newly solve
the radial Dirac-Coulomb equation and obtain a new exact solution without any
mathematical and physical difficulties. Unexpectedly, the K value constructed
by Dirac is naturally written in the barrier width or the equivalent radius of
the atomic nucleus in solving the Dirac equation with the exact boundary
condition, and it is independent of the quantum energy. Without any divergent
wave function and the virtual energies, we obtain a new formula of the energy
levels that is different from the Dirac formula of the energy levels in the
Coulomb field.Comment: 12 pages,no figure
A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the and $\Upsilon
The shapes of the inclusive photon spectra in the processes \Jp \to \gamma
X and \Up \to \gamma X have been analysed using all available experimental
data.
Relativistic, higher order QCD and gluon mass corrections were taken into
account in the fitted functions. Only on including the gluon mass corrections,
were consistent and acceptable fits obtained. Values of
GeV and GeV were found for the
effective gluon masses (corresponding to Born level diagrams) for the \Jp and
\Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to
\gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine and . Values consistent with the current world
average were obtained only when gluon mass correction factors,
calculated using the fitted values of the effective gluon mass, were applied. A
gluon mass GeV, as suggested with these results, is consistent with
previous analytical theoretical calculations and independent phenomenological
estimates, as well as with a recent, more accurate, lattice calculation of the
gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Since the mid-1920s, different strands of research used stars as "physics
laboratories" for investigating the nature of matter under extreme densities
and pressures, impossible to realize on Earth. To trace this process this paper
is following the evolution of the concept of a dense core in stars, which was
important both for an understanding of stellar evolution and as a testing
ground for the fast-evolving field of nuclear physics. In spite of the divide
between physicists and astrophysicists, some key actors working in the
cross-fertilized soil of overlapping but different scientific cultures
formulated models and tentative theories that gradually evolved into more
realistic and structured astrophysical objects. These investigations culminated
in the first contact with general relativity in 1939, when J. Robert
Oppenheimer and his students George Volkoff and Hartland Snyder systematically
applied the theory to the dense core of a collapsing neutron star. This
pioneering application of Einstein's theory to an astrophysical compact object
can be regarded as a milestone in the path eventually leading to the emergence
of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal
Nuclear Level Density and the Determination of Thermonuclear Rates for Astrophysics
The prediction of cross sections for nuclei far off stability is crucial in
the field of nuclear astrophysics. We discuss the model mostly employed for
such calculations: the statistical model (Hauser-Feshbach). Special emphasis is
put on the uncertainties arising from nuclear level density descriptions and an
improved global description is presented. Furthermore, criteria for the
applicability of the statistical model are investigated and a "map" for the
applicability of the model to reactions of stable and unstable nuclei with
neutral and charged particles is given.Comment: REVTeX paper + 7 B/W figures + 2 color figures; PRC, in press. Also
available at http://quasar.physik.unibas.ch/preps.htm