670 research outputs found

    The multi-stream flows and the dynamics of the cosmic web

    Full text link
    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computaionally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. In the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in a N-body simulation of the \L CDM model. The preliminary analysis has shown that numerical noise does not pose a significant problem. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggest that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.Comment: 19 pages, 10 figure

    The Value of the Cosmological Constant

    Full text link
    We make the cosmological constant, {\Lambda}, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t_{U}, be {\Lambda} ~ t_{U}^(-2) ~ 10^(-122), as observed. This is the classical value of {\Lambda} that dominates the wave function of the universe. Our new field equation determines {\Lambda} in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is {\Omega}_{k0} \equiv -k/a_(0)^(2)H^2= -0.0055, which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.Comment: 6 pages. This article received Third Prize in the 2011 Gravity Research Foundation Awards for Essays on Gravitatio

    Non-minimal neutral Higgs bosons at LEP2

    Get PDF
    We study the phenomenology of the neutral Higgs sector of a non-SUSY non-minimal Standard Model. Models with more than one Higgs doublet are possible, and may contain neutral Higgs scalars with branching ratios significantly different to those of the Minimal Standard Model Higgs boson. We show how these differences may be exploited at LEP2 in order to distinguish the non-minimal Standard Model from the minimal version.Comment: 12 pages inc 4 figures, Latex, to appear in Physics Letters

    Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge

    Get PDF
    It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions for the multipole coefficient Câ„“C_\ell in terms of these form factors. Explicit expressions are given here for the form factors in a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both Landau and Silk damping; inclusion of late-time effects; several references added; minor changes and corrections made. Accepted for publication in Phys. Rev. D1

    Lattice Sigma Models with Exact Supersymmetry

    Get PDF
    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and {\it twisted} versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and in many cases admit a Wilson term to suppress doubles. In the two and four dimensional theorie s we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions.Comment: 23 pages, 3 figures, formalism generalized to allow for explicit Wilson mass terms. New numerical results added. Version to be published in JHE

    Fermiophobic Higgs bosons at the Tevatron

    Full text link
    Higgs bosons with negligible couplings to fermions can arise in various non--minimal Higgs sectors. We show that such a particle could be discovered during the current run at the Tevatron, and would be evidence against a minimal supersymmetric Higgs sector.Comment: 10 pages, Latex, 5 figures, to appear in Phys. Lett. B, figures include

    Scalaron the mighty: producing dark matter and baryon asymmetry at reheating

    Get PDF
    In R^2-inflation scalaron slow roll is responsible for the inflationary stage, while its oscillations reheat the Universe. We find that the same scalaron decays induced by gravity can also provide the dark matter production and leptogenesis. With R^2-term and three Majorana fermions added to the Standard Model, we arrive at the phenomenologically complete theory capable of simultaneously explaining neutrino oscillations, inflation, reheating, dark matter and baryon asymmetry of the Universe. Besides the seesaw mechanism in neutrino sector, we use only gravity, which solves all the problems by exploiting scalaron.Comment: 13 pages; v2: minor corrections; v3: 14 pages, journal versio

    Constraining holographic inflation with WMAP

    Full text link
    In a class of recently proposed models, the early universe is strongly coupled and described holographically by a three-dimensional, weakly coupled, super-renormalizable quantum field theory. This scenario leads to a power spectrum of scalar perturbations that differs from the usual empirical LCDM form and the predictions of generic models of single field, slow roll inflation. This spectrum is characterized by two parameters: an amplitude, and a parameter g related to the coupling constant of the dual theory. We estimate these parameters, using WMAP and other astrophysical data. We compute Bayesian evidence for both the holographic model and standard LCDM and find that their difference is not significant, although LCDM provides a somewhat better fit to the data. However, it appears that Planck will permit a definitive test of this holographic scenario.Comment: 24 pages, 9 figs, published versio

    Cosmological model with interactions in the dark sector

    Get PDF
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure

    Relating the Cosmological Constant and Supersymmetry Breaking in Warped Compactifications of IIB String Theory

    Get PDF
    It has been suggested that the observed value of the cosmological constant is related to the supersymmetry breaking scale M_{susy} through the formula Lambda \sim M_p^4 (M_{susy}/M_p)^8. We point out that a similar relation naturally arises in the codimension two solutions of warped space-time varying compactifications of string theory in which non-isotropic stringy moduli induce a small but positive cosmological constant.Comment: 7 pages, LaTeX, references added and minor changes made, (v3) map between deSitter and global cosmic brane solutions clarified, supersymmetry breaking discussion improved and references adde
    • …
    corecore