47 research outputs found

    Eclipsing Binaries Showing Light Time Effect

    Full text link
    Four eclipsing binaries, which show apparent changes of period, have been studied with respect to a possible presence of the light time effect. With a least squares method we calculated new light elements of these systems, the mass function of the predicted third body, and its minimum mass. We discuss the probability of the presence of such bodies in terms of mass function, changes in radial velocity and third light in solution of light curves.Comment: 4 pages, 4 figures, 1 table, conference proceeding

    A new spectral classification system for the earliest O stars: definition of type O2

    Get PDF
    High-quality, blue-violet spectroscopic data are collected for 24 stars that have been classified as type O3 and that display the hallmark N IV and N V lines. A new member of the class is presented; it is the second known in the Cyg OB2 association, and only the second in the northern hemisphere. New digital data are also presented for several of the other stars. Although the data are inhomogeneous, the uniform plots by subcategory reveal some interesting new relationships. Several issues concerning the classification of the hottest O-type spectra are discussed, and new digital data are presented for the five original O3 dwarfs in the Carina Nebula, in which the N IV, N V features are very weak or absent. New spectral types O2 and O3.5 are introduced here as steps toward resolving these issues. The relationship between the derived absolute visual magnitudes and the spectroscopic luminosity classes of the O2–O3 stars shows more scatter than at later O types, at least partly because some overluminous dwarfs are unresolved multiple systems, and some close binary systems of relatively low luminosity and mass emulate O3 supergiant spectra. However, it also appears that the behavior of He II λ4686, the primary luminosity criterion at later O types, responds to other phenomena in addition to luminosity at spectral types O2–O3. There is evidence that these spectral types may correspond to an immediate pre-WN phase, with a correspondingly large range of luminosities and masses. A complete census of spectra classified into the original O3 subcategories considered here (not including intermediate O3/WN types or O3 dwarfs without N IV, N V features) totals 45 stars; 34 of them belong to the Large Magellanic Cloud and 20 of the latter to 30 Doradus

    IMF biases created by binning and unresolved systems

    Full text link
    I discuss two of the possible sources of biases in the determination of the IMF: binning and the existence of unresolved components. The first source is important for clusters with a small number of stars detected in a given mass bin while the second one is relevant for all clusters located beyond the immediate solar neighborhood. For both cases I will present results of numerical simulations and I will discuss strategies to correct for their effects. I also present a brief description of a third unrelated bias source.Comment: 6 pages, 10 figures, to appear in "Young massive clusters, initial conditions and environments", typo in author's name correcte

    Distinguishing circumstellar from stellar photometric variability in Eta Carinae

    Get PDF
    The interacting binary Eta Carinae remains one of the most enigmatic massive stars in our Galaxy despite over four centuries of observations. In this work, its light curve from the ultraviolet to the near-infrared is analysed using spatially resolved HST observations and intense monitoring at the La Plata Observatory, combined with previously published photometry. We have developed a method to separate the central stellar object in the ground-based images using HST photometry and applying it to the more numerous ground-based data, which supports the hypothesis that the central source is brightening faster than the almost-constant Homunculus. After detrending from long-term brightening, the light curve shows periodic orbital modulation (V ∼ 0.6 mag) attributed to the wind–wind collision cavity as it sweeps around the primary star and it shows variable projected area to our line-of-sight. Two quasi-periodic components with time-scales of 2–3 and 8–10 yr and low amplitude, V < 0.2 mag, are superimposed on the brightening light curve, being the only stellar component of variability found, which indicates minimal stellar instability. Moreover, the light-curve analysis shows no evidence of ‘shell ejections’ at periastron. We propose that the long-term brightening of the stellar core is due to the dissipation of a dusty clump in front of the central star, which works like a natural coronagraph. Thus, the central stars appear to be more stable than previously thought since the dominant variability originates from a changing circumstellar medium. We predict that the brightening phase, due mainly to dust dissipation, will be completed around 2032 ± 4 yr, when the star will be brighter than in the 1600s by up to V ∼ 1 mag.Fil: Damineli, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Fernandez Lajus, Eduardo Eusebio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Almeida, L.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio Grande do Norte; BrasilFil: Corcoran, M.F.. National Aeronautics and Space Administration; Estados Unidos. The Catholic University of America; Estados UnidosFil: Damineli, D.S.C.. University of Maryland; Estados UnidosFil: Gull, T.R.. National Aeronautics and Space Administration; Estados UnidosFil: Hamaguchi, K. National Aeronautics and Space Administration; Estados Unidos. University of Maryland; Estados UnidosFil: Hillier, D.J.. University of Pittsburgh; Estados UnidosFil: Jablonski, F.J.. Centro de Previsao de Tempo e Estudos Climáticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Madura, T.I.. San Jose State University; Estados UnidosFil: Moffat, A.F.J.. Université du Québec a Montreal; CanadáFil: Navarete, F.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Richardson, N.D.. University Of Toledo (utoledo); Estados UnidosFil: Ruiz, G.F.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Salerno, N.E.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Scalia, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Weigelt, G.. Max Planck Institute For Radio Astronomy; Alemani

    The Tarantula massive binary monitoring: III. Atmosphere analysis of double-lined spectroscopic systems

    Get PDF
    Context. Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. Aims. We aim to derive the atmospheric parameters of the 31 double-lined spectroscopic binaries in the Tarantula Massive Binary Monitoring sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O-type star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. Methods. In the present paper, 32 epochs of FLAMES/GIRAFFE spectra are analysed by using spectral disentangling to construct the individual spectra of 62 components. We then apply the CMFGEN atmosphere code to determine their stellar parameters and their helium, carbon, and nitrogen surface abundances. Results. Among the 31 systems that we study in the present paper, we identify between 48 and 77% of them as detached, likely pre-interacting systems, 16% as semi-detached systems, and between 5 and 35% as systems in or close to contact phase. Based on the properties of their components, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. For semi-detached systems, components that fill their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are likely rejuvenated. Their locations in the N − v sin i diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched objects and rapidly rotating non-enriched objects) that cannot be reproduced through single-star population synthesis. Finally, we find no peculiar surface abundances for the components in (over-)contact systems, as has been suggested by evolutionary models for tidal mixing. Conclusions. This sample, consisting of 31 massive binary systems, is the largest sample of binaries composed of at least one O-type star to be studied in such a homogeneous way by applying spectral disentangling and atmosphere modelling. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks

    Polarimetric Evidence of Non-Spherical Winds

    Get PDF
    Polarization observations yield otherwise unobtainable information about the geometrical structure of unresolved objects. In this talk we review the evidences for non-spherically symmetric structures around Luminous Hot Stars from polarimetry and what we can learn with this technique. Polarimetry has added a new dimension to the study of the envelopes of Luminous Blue Variables, Wolf-Rayet stars and B[e] stars, all of which are discussed in some detail.Comment: 8 pages, 2 encapsulated Postscript figures, uses lamuphys.sty. Invited review to appear in IAU Coll. 169, Variable and Non-Spherical Stellar Winds in Luminous Hot Stars, eds. B. Wolf, A.Fullerton and O. Stahl (Springer

    Проект установки получения 9-этоксикарбазола

    Get PDF
    Цель работы – спроектировать установку поучения 9-этоксикарбазола с мощностью 66 тонн в год. Объектом разработки является алкилирование карбазола этиленхлоргидрином в присутствии ацетона и гидроксида натрия. Целью проектирования является разработка комплекса взаимосвязанных процессов, обеспечивающих выработку требуемого продукта нужного качества.The work purpose – to design lecture installation 9 ethoxydibenzo-pyrroles with a power of 66 tons per year. Object of development is the dibenzo-pyrrole alkylation etilenkhlorgidriny in the presence of acetone and sodium hydroxide. The purpose of projection is development of a complex of the interdependent processes providing development of the required product of the necessary quality

    Zeta Pup variability revisited

    Full text link
    In 2013, we reported on the variability properties of zeta Puppis, one of the hottest and closest massive stars. In particular, while short-term stochastic variability seems absent, ”trends” with a typical timescale longer than the exposure length were detected. Since then, such features were found in other objects as well, and the favored scenario links them to co-rotating wind structures. Using new observations as well as optical photometry, we revisit the variability of zeta Pup with the aim of assessing the CIR scenario
    corecore