12 research outputs found

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Native seed dispersal by rodentsis negatively influenced by an invasive shrub

    No full text
    [EN] Refuge–mediated apparent competition is the mechanism by which invasive plants increase pressure on native plants by providing refuge for generalist consumers. In the UK, the invasive Rhododendron ponticum does not provide food for generalist seed consumers like rodents, but evergreen canopy provides refuge from rodent predators, and predation and pilferage risk are key factors affecting rodent foraging and caching behaviour. Here we used a seed removal/ seed fate experiment to understand how invasion by an evergreen shrub can alter seed dispersal, seed fate and early recruitment of native trees. We used seeds of four species, small and wind–dispersed (sycamore maple Acer pseudoplatanus and European ash Fraxinus excelsior) and large and animal–dispersed (pedunculate oak Quercus robur and common hazel Corylus avellana), and monitored seed predation and caching in open woodland, edge habitats, and under Rhododendron. In the open woodland, wind–dispersed seeds had a higher probability of being eaten in situ than cached seeds, while the opposite occurred with animal–dispersed seeds. The latter were removed from the open woodland and edge habitats and cached under Rhododendron. This pattern was expected if predation risk was the main factor influencing the decision to eat or to cach a seed. Enhanced dispersal towards Rhododendron cover did not increase the prospects for seed survival, as density of hazel and oak saplings under its cover was close to zero as compared to open woodland, possibly due to increased cache pilferage or low seedling survival under dense shade, or both. Enhanced seed predation of ash and sycamore seeds close to Rhododendron cover also decreased recruitment of these trees. Rhododendron patches biased rodent foraging behaviour towards the negative (net predation) side of the conditional rodent / tree interaction. This effect will potentially impact native woodland regeneration and further facilitate Rhododendron spread due to refuge–mediated apparent competition.[ES] Un arbusto invasor influye negativamente en la dispersión de semillas autóctonas por roedores. La compe-tencia aparente mediada por refugio es el mecanismo por el que las plantas invasivas aumentan la presión sobre las autóctonas proporcionando un refugio para los consumidores generalistas. En el Reino Unido, la especie invasora Rhododendron ponticum no proporciona alimento a los consumidores generalistas de semi-llas, pero el dosel perenne ofrece refugio frente a roedores depredadores, y la depredación y el robo son los principales riesgos que afectan al comportamiento de alimentación y almacenamiento de los roedores. En el presente estudio, llevamos a cabo un experimento sobre la retirada y el destino de las semillas con objeto de entender cómo puede afectar la invasión de un arbusto perenne a la dispersión y el destino de las semillas y al reclutamiento temprano de árboles autóctonos. Utilizamos semillas de cuatro especies: semillas pequeñas y anemócoras (arce blanco Acer pseudoplatanus y fresno común Fraxinus excelsior) y semillas grandes y zoócoras (roble común Fraxinus excelsior y avellano común Corylus avellana) e hicimos el seguimiento de la predación y el almacenamiento de semillas en bosques abiertos, en hábitats de transición y debajo de Rhododendron. En los bosques abiertos, las semillas anemócoras tuvieron una mayor probabilidad de ser consumidas in situ que almacenadas, mientras que en las semillas zoócoras ocurrió lo contrario.This research was funded by a ERC Marie Curie fellowship (PIEF–GA–2008–220322). During the write up of this manuscript, AFM was partly supported by an ERC grant (249872) and by a Ramón y Cajal research contract from the MINECO (RYC–2016–21114).Peer reviewe

    International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station

    No full text
    International audienceThe International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime.Fission-based production of 99Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of 133Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice.Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from releases from a nuclear explosion. © 2016
    corecore