637 research outputs found

    Renormalization group analysis of the QCD quark potential to order v^2

    Get PDF
    A one-loop renormalization group analysis of the order v^2 relativistic corrections to the static QCD potential is presented. The velocity renormalization group is used to simultaneously sum ln(m/mv) and ln(m/mv^2) terms. The results are compared to previous calculations in the literature.Comment: 13 pages. important change: running of soft Lagrangian include

    DC Josephson Effect in SNS Junctions of Anisotropic Superconductors

    Full text link
    A formula for the Josephson current between two superconductors with anisotropic pairing symmetries is derived based on the mean-field theory of superconductivity. Zero-energy states formed at the junction interfaces is one of basic phenomena in anisotropic superconductor junctions. In the obtained formula, effects of the zero-energy states on the Josephson current are taken into account through the Andreev reflection coefficients of a quasiparticle. In low temperature regimes, the formula can describe an anomaly in the Josephson current which is a direct consequence of the exsitence of zero-energy states. It is possible to apply the formula to junctions consist of superconductors with spin-singlet Cooper pairs and those with spin-triplet Cooper pairs

    Spinor Field in Bianchi type-I Universe: regular solutions

    Get PDF
    Self-consistent solutions to the nonlinear spinor field equations in General Relativity has been studied for the case of Bianchi type-I (B-I) space-time. It has been shown that, for some special type of nonliearity the model provides regular solution, but this singularity-free solutions are attained at the cost of broken dominant energy condition in Hawking-Penrose theorem. It has also been shown that the introduction of Λ\Lambda-term in the Lagrangian generates oscillations of the B-I model, which is not the case in absence of Λ\Lambda term. Moreover, for the linear spinor field, the Λ\Lambda term provides oscillatory solutions, those are regular everywhere, without violating dominant energy condition. Key words: Nonlinear spinor field (NLSF), Bianch type -I model (B-I), Λ\Lambda term PACS 98.80.C CosmologyComment: RevTex, 21 page

    B-->pi and B-->K transitions in standard and quenched chiral perturbation theory

    Get PDF
    We study the effects of chiral logs on the heavy-->light pseudoscalar meson transition form factors by using standard and quenched chiral perturbation theory combined with the static heavy quark limit. The resulting expressions are used to indicate the size of uncertainties due to the use of the quenched approximation in the current lattice studies. They may also be used to assess the size of systematic uncertainties induced by missing chiral log terms in extrapolating toward the physical pion mass. We also provide the coefficient multiplying the quenched chiral log, which may be useful if the quenched lattice studies are performed with very light mesons.Comment: 33 pages, 8 PostScript figures, version to appear in PR

    Polyphenols journey through blood-brain barrier towards neuronal protection

    Get PDF
    Age-related complications such as neurodegenerative disorders are increasing and remain cureless. The possibility of altering the progression or the development of these multifactorial diseases through diet is an emerging and attractive approach with increasing experimental support. We examined the potential of known bioavailable phenolic sulfates, arising from colonic metabolism of berries, to infuence hallmarks of neurodegenerative processes. In silico predictions and in vitro transport studies across blood-brain barrier (BBB) endothelial cells, at circulating concentrations, provided evidence for diferential transport, likely related to chemical structure. Moreover, endothelial metabolism of these phenolic sulfates produced a plethora of novel chemical entities with further potential bioactivies. Pre-conditioning with phenolic sulfates improved cellular responses to oxidative, excitotoxicity and infammatory injuries and this attenuation of neuroinfammation was achieved via modulation of NF-κB pathway. Our results support the hypothesis that these small molecules, derived from dietary (poly)phenols may cross the BBB, reach brain cells, modulate microglia-mediated infammation and exert neuroprotective efects, with potential for alleviation of neurodegenerative diseases.info:eu-repo/semantics/publishedVersio

    What is a β cell? - Chapter I in the Human Islet Research Network (HIRN) review series

    Get PDF
    BACKGROUND: The pancreatic β cell, as the sole source of the vital hormone insulin, has been under intensive study for more than a century. Given the potential of newly created insulin-producing cells as a treatment or even cure of type 1 diabetes (T1D) and possibly in severe cases of type 2 diabetes (T2D), multiple academic and commercial laboratories are working to derive surrogate glucose-responsive, insulin-producing cells. SCOPE OF REVIEW: The recent development of advanced phenotyping technologies, including molecular, epigenomic, histological, or functional, have greatly improved our understanding of the critical properties of human β cells. Using this information, here we summarize the salient features of normal, fully functional adult human β cells, and propose minimal criteria for what should rightfully be termed 'β cells' as opposed to insulin-producing but not fully-functional surrogates that we propose should be referred to as 'β-like' cells or insulin-producing cells. MAJOR CONCLUSIONS: Clear criteria can be established to differentiate fully functional, mature β cells from 'β-like' surrogates. In addition, we outline important knowledge gaps that must be addressed to enable a greater understanding of the β cell

    Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome

    Get PDF
    Background: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. Results: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. Conclusions: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
    corecore