68 research outputs found

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Factors Affecting European Farmers’Participation in Biodiversity Policies

    Get PDF
    This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160 publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though clearly not sufficient condition in this process

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Changes in photosynthetic capacity, carboxylation efficiency, and CO 2 compensation point associated with midday stomatal closure and midday depression of net CO 2 exchange of leaves of Quercus suber

    Full text link
    The carbon-dioxide response of photosynthesis of leaves of Quercus suber , a sclerophyllous species of the European Mediterranean region, was studied as a function of time of day at the end of the summer dry season in the natural habitat. To examine the response experimentally, a “standard” time course for temperature and humidity, which resembled natural conditions, was imposed on the leaves, and the CO 2 pressure external to the leaves on subsequent days was varied. The particular temperature and humidity conditions chosen were those which elicited a strong stomatal closure at midday and the simultaneous depression of net CO 2 uptake. Midday depression of CO 2 uptake is the result of i) a decrease in CO 2 -saturated photosynthetic capacity after light saturation is reached in the early morning, ii) a decrease in the initial slope of the CO 2 response curve (carboxylation efficiency), and iii) a substantial increase in the CO 2 compensation point caused by an increase in leaf temperature and a decrease in humidity. As a consequence of the changes in photosynthesis, the internal leaf CO 2 pressure remained essentially constant despite stomatal closure. The effects on capacity, slope, and compensation point were reversed by lowering the temperature and increasing the humidity in the afternoon. Constant internal CO 2 may aid in minimizing photoinhibition during stomatal closure at midday. The results are discussed in terms of possible temperature, humidity, and hormonal effects on photosynthesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47468/1/425_2004_Article_BF00397440.pd

    The diverse effects of intraspecific competition on the selective advantage to resistance: A model and its predictions

    No full text
    We constructed a model to investigate conditions under which intraspecific competition amplifies or diminishes the selective advantage to resistance. The growth trajectories of competing individual plants were depicted by logistic difference equations that incorporated basic costs (lowered growth rate) and benefits (lowered damage) of defense. Analytical results showed that when competition is absent, resistance is favored by high damage, low cost, and slow growth rate. Competition makes selection more complex. When herbivore damage reduces the size of a susceptible plant, resistant neighbors can usurp its resources and thus suppress its regrowth. This competitive interaction amplifies the relative fitness of the resistants. Numerical simulations explored a broader range of conditions. Three factors were varied: competition mode (symmetric vs. asymmetric), resistance type (damage avoidance vs, damage reduction), and timing of attack (early, mid, or late season). We found that competition mode had drastic effects on outcomes. Under symmetric competition, increased plant density intensified the selective advantage of resistance, damage avoidance was more strongly favored than damage reduction, and resistance to late attack was more favored than to early attack. Asymmetric competition had opposite effects: selection acted against resistance at high density, damage reduction was more strongly favored, and resistance against early attack was more favored. Interestingly, the two competition modes induced opposite patterns of density-dependent selection. The difference between the symmetric and asymmetric cases is explained by the fact that resistance costs during the preattack phase are more strongly amplified by asymmetric competition. When resistance is induced, so that pre-attack costs of resistance are zero, asymmetric competition more strongly amplified the benefits during the postattack phase. The prediction that selection on resistance will he plant density-dependent has complex implications for the evolutionary dynamics of defense evolution. [KEYWORDS: competition; resistance; costs of resistance; plants; herbivory; model Relative growth-rate; plant competition; asymmetric competition; neighborhood competition; aristolochia-reticulata; compensatory growth; chrysomelid beetle; rumex-obtusifolius; impatiens-capensis; senecio-jacobaea]

    Time after time: flowering phenology and biotic interactions

    No full text
    The role of biotic interactions in shaping plant flowering phenology has long been controversial; plastic responses to the abiotic environment, limited precision of biological clocks and inconsistency of selection pressures have generally been emphasized to explain phenological variation. However, part of this variation is heritable and selection analyses show that biotic interactions can modulate selection on flowering phenology. Our review of the literature indicates that pollinators tend to favour peak or earlier flowering, whereas pre-dispersal seed predators tend to favour off-peak or later flowering. However, effects strongly vary among study systems. To understand such variation, future studies should address the impact of mutualist and antagonist dispersal ability, ecological specialization, and habitat and plant population characteristics. Here, we outline future directions to study how such interactions shape flowering phenology.
    corecore