46 research outputs found

    DN interaction from meson exchange

    Get PDF
    A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KbarN potential of the Juelich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box diagrams involving D*N, D\Delta, and D*\Delta intermediate states. The coupling of DN to the pi-Lambda_c and pi-Sigma_c channels is taken into account. The interaction model generates the Lambda_c(2595) resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of an interaction model that is based on the leading-order Weinberg-Tomozawa term. Some features of the Lambda_c(2595) resonance are discussed and the role of the near-by pi-Sigma_c threshold is emphasized. Selected predictions of the orginal KbarN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Lambda(1405) resonance.Comment: 14 pages, 8 figure

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Kaon properties in (proto)neutron stars

    Full text link
    The modification on kaon and antikaon properties of in the interior of (proto-)neutron stars is investigated using a chiral SU(3) model. The parameters of the model are fitted to nuclear matter saturation properties, baryon octet vacuum masses, hyperon optical potentials and low energy a kaon-nucleon scattering lengths. We study the kaon/antikaon medium modification and explore the possibility of antikaon condensation in (proto-)neutron star matter at zero as well as finite temperature/entropy and neutrino content. The effect of hyperons on kaon and antikaon optical potentials is also investigated at different stages of the neutron star evolution.Comment: 17 pages including 4 figure

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region.Domestication of horses fundamentally transformed long-range mobility and warfare(1). However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling(2-4) at Botai, Central Asia around 3500 bc(3). Other longstanding candidate regions for horse domestication, such as Iberia(5) and Anatolia(6), have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association(7) between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc(8,9) driving the spread of Indo-European languages(10). This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture(11,12).Descriptive and Comparative Linguistic
    corecore