17 research outputs found

    Dynamical neutrino masses in the generalized Chaplygin gas scenario with mass varying CDM

    Full text link
    Neutrinos coupled to an underlying scalar field in the scenario for unification of mass varying dark matter and cosmon-{\em like} dark energy is examined. In the presence of a tiny component of mass varying neutrinos, the conditions for the present cosmic acceleration and for the stability issue are reproduced. It is assumed that {\em sterile} neutrinos behave like mass varying dark matter coupled to mass varying {\em active} neutrinos through the {\em seesaw} mechanism, in a kind of {\em mixed} dark matter sector. The crucial point is that the dark matter mass may also exhibit a dynamical behavior driven by the scalar field. The scalar field mediates the nontrivial coupling between the mixed dark matter and the dark energy responsible for the accelerated expansion of the universe. The equation of state of perturbations reproduce the generalized Chaplygin gas (GCG) cosmology so that all the effective results from the GCG paradigm are maintained, being perturbatively modified by neutrinos.Comment: 19 pages, 5 figure

    Equilibrium and stability of neutrino lumps as TOV solutions

    Full text link
    We report about stability conditions for static, spherically symmetric objects that share the essential features of mass varying neutrinos in cosmological scenarios. Compact structures of particles with variable mass are held together preponderantly by an attractive force mediated by a background scalar field. Their corresponding conditions for equilibrium and stability are given in terms of the ratio between the total mass-energy and the spherical lump radius, M/RM/R. We show that the mass varying mechanism leading to lump formation can modify the cosmological predictions for the cosmological neutrino mass limits. Our study comprises Tolman-Oppenheimer-Volkoff solutions of relativistic objects with non-uniform energy densities. The results leave open some questions concerning stable regular solutions that, to an external observer, very closely reproduce the preliminary conditions to form Schwarzschild black holes.Comment: 20 pages, 5 figure

    Coupling active and sterile neutrinos in the cosmon plus seesaw framework

    Full text link
    The cosmological evolution of neutrino energy densities driven by cosmon-type field equations is introduced assuming that active and sterile neutrinos are intrinsically connected by cosmon fields through the {\em seesaw} mechanism. Interpreting sterile neutrinos as dark matter adiabatically coupled with dark energy results in a natural decoupling of (active) mass varying neutrino (MaVaN) equations. Identifying the dimensionless scale of the {\em seesaw} mechanism, m/Mm/M, with a power of the cosmological scale factor, aa, allows for embedding the resulting masses into the generalized Chaplygin gas (GCG) scenario for the dark sector. Without additional assumptions, our findings establish a precise connection among three distinct frameworks: the cosmon field dynamics for MaVaN's, the {\em seesaw} mechanism for dynamical mass generation and the GCG scenario. Our results also corroborate with previous assertions that mass varying particles can be the right responsible for the stability issue and for the cosmic acceleration of the universe.Comment: 12 pages, 2 figure

    Developing a Conceptual Framework of Landscape and Hydrology on Tallgrass Prairie:A Critical Zone Approach

    No full text
    Agricultural intensification and urbanization have greatly reduced the extent of tallgrass prairie across North America. To evaluate the impact of these changes, a reference ecosystem of unperturbed prairie is required. The Konza Prairie Biological Station in northeastern Kansas is a long-term research site at which a critical zone approach has been implemented. Integration of climatic, ecologic, and hydropedologic research to facilitate a comprehensive understanding of the complex environment provides the basis for predicting future aquifer and landscape evolution. We present a conceptual framework of the hydrology underpinning the area that integrates the extensive current and past research and provides a synthesis of the literature to date. The key factors in the hydrologic behavior of Konza Prairie are climate, ecology, vadose zone characteristics and management, and groundwater and bedrock. Significant interactions among these factors include bedrock dissolution driven by cool-season precipitation and hence a climatic control on the rate of karstification. Soil moisture dynamics are influenced at various timescales due to the short- and long-term effects of prescribed burning on vegetation and on soil physical characteristics. The frequency of burning regimes strongly influences the expansion of woody species in competition with native tallgrasses, with consequent effects on C and N dynamics within the vadose zone. Knowledge gaps exist pertaining to the future of Konza Prairie (a model for US tallgrass prairie)—whether continued karstification will lead to increasingly flashy and dynamic hydrology and whether compositional changes in the vegetation will affect long-term changes in water balances

    Reorganization of a deeply incised drainage: role of deformation, sedimentation and groundwater flow

    No full text
    Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments
    corecore