890 research outputs found

    M-flation and its spectators

    Full text link
    M-flation is an implementation of assisted inflation, in which the inflaton fields are three N_c x N_c non-abelian hermitean matrices. The model can be consistently truncated to an effectively single field inflation model, with all ``spectator'' fields fixed at the origin. We show that starting with random initial conditions for all fields the truncated sector is not a late-time attractor, but instead the system evolves towards quadratic assisted inflation with all fields mass degenerate. Demanding the energy density during inflation to be below the effective quantum gravity scale, we find that the number of fields, and thus the assisted effect, is bounded N_c < 10^2.Comment: 26 pages, published versio

    Double Inflation in Supergravity and the Large Scale Structure

    Full text link
    The cosmological implication of a double inflation model with hybrid + new inflations in supergravity is studied. The hybrid inflation drives an inflaton for new inflation close to the origin through supergravity effects and new inflation naturally occurs. If the total e-fold number of new inflation is smaller than 60\sim 60, both inflations produce cosmologically relevant density fluctuations. Both cluster abundances and galaxy distributions provide strong constraints on the parameters in the double inflation model assuming Ω0=1\Omega_0=1 standard cold dark matter scenario. The future satellite experiments to measure the angular power spectrum of the cosmic microwave background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file

    Spontaneous Creation of Inflationary Universes and the Cosmic Landscape

    Full text link
    We study some gravitational instanton solutions that offer a natural realization of the spontaneous creation of inflationary universes in the brane world context in string theory. Decoherence due to couplings of higher (perturbative) modes of the metric as well as matter fields modifies the Hartle-Hawking wavefunction for de Sitter space. Generalizing this new wavefunction to be used in string theory, we propose a principle in string theory that hopefully will lead us to the particular vacuum we live in, thus avoiding the anthropic principle. As an illustration of this idea, we give a phenomenological analysis of the probability of quantum tunneling to various stringy vacua. We find that the preferred tunneling is to an inflationary universe (like our early universe), not to a universe with a very small cosmological constant (i.e., like today's universe) and not to a 10-dimensional uncompactified de Sitter universe. Such preferred solutions are interesting as they offer a cosmological mechanism for the stabilization of extra dimensions during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical string vacua, added reference

    Accidental Inflation in the Landscape

    Full text link
    We study some aspects of fine tuning in inflationary scenarios within string theory flux compactifications and, in particular, in models of accidental inflation. We investigate the possibility that the apparent fine-tuning of the low energy parameters of the theory needed to have inflation can be generically obtained by scanning the values of the fluxes over the landscape. Furthermore, we find that the existence of a landscape of eternal inflation in this model provides us with a natural theory of initial conditions for the inflationary period in our vacuum. We demonstrate how these two effects work in a small corner of the landscape associated with the complex structure of the Calabi-Yau manifold P^4_[1,1,1,6,9] by numerically investigating the flux vacua of a reduced moduli space. This allows us to obtain the distribution of observable parameters for inflation in this mini-landscape directly from the fluxes.Comment: 40 pages, 11 figure

    A Monitoring Instrument for Resilience

    Get PDF
    This document describes a monitoring instrument for efficiently tracking changes in resilience in agricultural initiatives. Operationalizing the concept of resilience (i.e. the ability to withstand change, stresses and shocks) poses significant challenges for project managers, particularly when required for performance reporting. This monitoring instrument aims to balance the demands for tracking and reporting changes in resilience with the scarcity of time and information typical of development initiatives. The instrument can be used to inform decisions on program planning and management where the program goal is to enhance the resilience of communities, to better manage ecosystem services, and to create positive and sustainable development impacts

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    A Biased Review of Sociophysics

    Full text link
    Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous reference

    Quantum Measurement of a Coupled Nanomechanical Resonator -- Cooper-Pair Box System

    Get PDF
    We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Fock state of the resonator. Similarly, the frequency of the resonator becomes dependent on the state of the Cooper-pair box. We consider whether these frequency shifts could be utilized to prepare the nanomechanical resonator in a Fock state, to perform a quantum non-demolition measurement of the resonator Fock state, and to distinguish the phase states of the Cooper-pair box

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
    corecore