19 research outputs found

    Energy composition of the Universe: time-independent internal symmetry

    Full text link
    The energy composition of the Universe, as emerged from the Type Ia supernova observations and the WMAP data, looks preposterously complex, -- but only at the first glance. In fact, its structure proves to be simple and regular. An analysis in terms of the Friedmann integral enables to recognize a remarkably simple time-independent covariant robust recipe of the cosmic mix: the numerical values of the Friedmann integral for vacuum, dark matter, baryons and radiation are approximately identical. The identity may be treated as a symmetry relation that unifies cosmic energies into a regular set, a quartet, with the Friedmann integral as its common genuine time-independent physical parameter. Such cosmic internal (non-geometrical) symmetry exists whenever cosmic energies themselves exist in nature. It is most natural for a finite Universe suggested by the WMAP data. A link to fundamental theory may be found under the assumption about a special significance of the electroweak energy scale in both particle physics and cosmology. A freeze-out model developed on this basis demonstrates that the physical nature of new symmetry might be due to the interplay between electroweak physics and gravity at the cosmic age of a few picoseconds. The big `hierarchy number' of particle physics represents the interplay in the model. This number quantifies the Friedmann integral and gives also a measure to some other basic cosmological figures and phenomena associated with new symmetry. In this way, cosmic internal symmetry provides a common ground for better understanding of old and recent problems that otherwise seem unrelated; the coincidence of the observed cosmic densities, the flatness of the co-moving space, the initial perturbations and their amplitude, the cosmic entropy are among them.Comment: 32 page

    Dark energy and key physical parameters of clusters of galaxies

    Full text link
    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: 1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.Comment: 8 pages, 1 figur

    Evolution of density perturbations in a realistic universe

    Full text link
    Prompted by the recent more precise determination of the basic cosmological parameters and growing evidence that the matter-energy content of the universe is now dominated by dark energy and dark matter we present the general solution of the equation that describes the evolution of density perturbations in the linear approximation. It turns out that as in the standard CDM model the density perturbations grow very slowly during the radiation dominated epoch and their amplitude increases by a factor of about 4000 in the matter and later dark energy dominated epoch of expansion of the universe.Comment: 19 pages, 4 figure

    A Better Way to Reconstruct Dark Energy Models ?

    Full text link
    To reconstruct dark energy models the redshift zeqz_{eq}, marking the end of radiation era and the beginning of matter-dominated era, can play a role as important as ztz_{t}, the redshift at which deceleration parameter experiences a signature flip. To implement the idea we propose a variable equation of state for matter that can bring a smooth transition from radiation to matter-dominated era in a single model. A popular Λρ\Lambda \propto \rho dark energy model is chosen for demonstration but found to be unacceptable. An alternative Λρa3\Lambda \propto \rho a^{3} model is proposed and found to be more close to observation.Comment: 17 pages, 5 figures Accepted for publication in `Astrophysics and Space Science

    The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum

    Full text link
    Based on the 4D momentum, the influence of quintessence on the gravitational frequency shift and the deflection of light are examined in modified Schwarzschild space. We find that the frequency of photon depends on the state parameter of quintessence wqw_q: the frequency increases for 1<wq<1/3-1<w_q<-1/3 and decreases for 1/3<wq<0-1/3<w_q<0. Meanwhile, we adopt an integral power number aa (a=3ωq+2a = 3\omega_q + 2) to solve the orbital equation of photon. The photon's potentials become higher with the decrease of ωq\omega_q. The behavior of bending light depends on the state parameter ωq\omega_q sensitively. In particular, for the case of ωq=1\omega_q = -1, there is no influence on the deflection of light by quintessence. Else, according to the H-masers of GP-A redshift experiment and the long-baseline interferometry, the constraints on the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    corecore