77 research outputs found

    Single parameter scaling in 1-D localized absorbing systems

    Get PDF
    Numerical study of the scaling of transmission fluctuations in the 1-D localization problem in the presence of absorption is carried out. Violations of single parameter scaling for lossy systems are found and explained on the basis of a new criterion for different types of scaling behavior derived by Deych et al [Phys. Rev. Lett., {\bf 84}, 2678 (2000)].Comment: 7 pages, 6 figures, RevTex, submitted to Phys. Rev.

    Ground state properties of the 2D disordered Hubbard model

    Full text link
    We study the ground state of the two-dimensional (2D) disordered Hubbard model by means of the projector quantum Monte Carlo (PQMC) method. This approach allows us to investigate the ground state properties of this model for lattice sizes up to 10×1010 \times 10, at quarter filling, for a broad range of interaction and disorder strengths. Our results show that the ground state of this system of spin-1/2 fermions remains localised in the presence of the short-ranged Hubbard interaction.Comment: 7 pages, 9 figure

    Wave function multifractality and dephasing at metal-insulator and quantum Hall transitions

    Full text link
    We analyze the critical behavior of the dephasing rate induced by short-range electron-electron interaction near an Anderson transition of metal-insulator or quantum Hall type. The corresponding exponent characterizes the scaling of the transition width with temperature. Assuming no spin degeneracy, the critical behavior can be studied by performing the scaling analysis in the vicinity of the non-interacting fixed point, since the latter is stable with respect to the interaction. We combine an analytical treatment (that includes the identification of operators responsible for dephasing in the formalism of the non-linear sigma-model and the corresponding renormalization-group analysis in 2+ϵ2+\epsilon dimensions) with numerical simulations on the Chalker-Coddington network model of the quantum Hall transition. Finally, we discuss the current understanding of the Coulomb interaction case and the available experimental data.Comment: 33 pages, 7 figures, elsart styl

    Metal-insulator transition in two-dimensional disordered systems with power-law transfer terms

    Full text link
    We investigate a disordered two-dimensional lattice model for noninteracting electrons with long-range power-law transfer terms and apply the method of level statistics for the calculation of the critical properties. The eigenvalues used are obtained numerically by direct diagonalization. We find a metal-insulator transition for a system with orthogonal symmetry. The exponent governing the divergence of the correlation length at the transition is extracted from a finite size scaling analysis and found to be ν=2.6±0.15\nu=2.6\pm 0.15. The critical eigenstates are also analyzed and the distribution of the generalized multifractal dimensions is extrapolated.Comment: 4 pages with 4 figures, printed version: PRB, Rapid Communication

    Statistical properties of phases and delay times of the one-dimensional Anderson model with one open channel

    Full text link
    We study the distribution of phases and of Wigner delay times for a one-dimensional Anderson model with one open channel. Our approach, based on classical Hamiltonian maps, allows us an analytical treatment. We find that the distribution of phases depends drastically on the parameter σA=σ/sink\sigma_A = \sigma/sin k where σ2\sigma^2 is the variance of the disorder distribution and kk the wavevector. It undergoes a transition from uniformity to singular behaviour as σA\sigma_A increases. The distribution of delay times shows universal power law tails  1/τ2~ 1/\tau^2, while the short time behaviour is σA\sigma_A- dependent.Comment: 4 pages, 2 figures, Submitted to PR

    Delocalization and Diffusion Profile for Random Band Matrices

    Full text link
    We consider Hermitian and symmetric random band matrices H=(hxy)H = (h_{xy}) in d≥1d \geq 1 dimensions. The matrix entries hxyh_{xy}, indexed by x,y \in (\bZ/L\bZ)^d, are independent, centred random variables with variances s_{xy} = \E |h_{xy}|^2. We assume that sxys_{xy} is negligible if ∣x−y∣|x-y| exceeds the band width WW. In one dimension we prove that the eigenvectors of HH are delocalized if W≫L4/5W\gg L^{4/5}. We also show that the magnitude of the matrix entries \abs{G_{xy}}^2 of the resolvent G=G(z)=(H−z)−1G=G(z)=(H-z)^{-1} is self-averaging and we compute \E \abs{G_{xy}}^2. We show that, as L→∞L\to\infty and W≫L4/5W\gg L^{4/5}, the behaviour of \E |G_{xy}|^2 is governed by a diffusion operator whose diffusion constant we compute. Similar results are obtained in higher dimensions

    Inelastic Scattering Time for Conductance Fluctuations

    Full text link
    We revisit the problem of inelastic times governing the temperature behavior of the weak localization correction and mesoscopic fluctuations in one- and two-dimensional systems. It is shown that, for dephasing by the electron electron interaction, not only are those times identical but the scaling functions are also the same.Comment: 10 pages Revtex; 5 eps files include

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    Hidden degree of freedom and critical states in a two-dimensional electron gas in the presence of a random magnetic field

    Full text link
    We establish the existence of a hidden degree of freedom and the critical states of a spinless electron system in a spatially-correlated random magnetic field with vanishing mean. Whereas the critical states are carried by the zero-field contours of the field landscape, the hidden degree of freedom is recognized as being associated with the formation of vortices in these special contours. It is argued that, as opposed to the coherent backscattering mechanism of weak localization, a new type of scattering processes in the contours controls the underlying physics of localization in the random magnetic field system. In addition, we investigate the role of vortices in governing the metal-insulator transition and propose a renormalization-group diagram for the system under study.Comment: 17 pages, 16 figures; Figs. 1, 7, 9, and 10 have been reduced in quality for e-submissio

    Which Kubo formula gives the exact conductance of a mesoscopic disordered system?

    Full text link
    In both research and textbook literature one often finds two ``different'' Kubo formulas for the zero-temperature conductance of a non-interacting Fermi system. They contain a trace of the product of velocity operators and single-particle (retarded and advanced) Green operators: Tr(v^xG^rv^xG^a)\text{Tr} (\hat{v}_x \hat{G}^r \hat{v}_x \hat{G}^a) or Tr(v^xImG^v^xImG^)\text{Tr} (\hat{v}_x \text{Im} \hat{G} \hat{v}_x \text{Im} \hat{G}). The study investigates the relationship between these expressions, as well as the requirements of current conservation, through exact evaluation of such quantum-mechanical traces for a nanoscale (containing 1000 atoms) mesoscopic disordered conductor. The traces are computed in the semiclassical regime (where disorder is weak) and, more importantly, in the nonperturbative transport regime (including the region around localization-delocalization transition) where concept of mean free path ceases to exist. Since quantum interference effects for such strong disorder are not amenable to diagrammatic or nonlinear σ\sigma-model techniques, the evolution of different Green function terms with disorder strength provides novel insight into the development of an Anderson localized phase.Comment: 7 pages, 5 embedded EPS figures, final published version (note: PRB article has different title due to editorial censorship
    • …
    corecore