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Scaling in one-dimensional localized absorbing systems
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Numerical study of the scaling of transmission fluctuations in the one-dimensional localization problem in
the presence of absorption is carried out. Violations of single-parameter scaling for lossy systems are found and
explained on the basis of a new criterion for different types of scaling behavior derived by Deychet al. @Phys.
Rev. Lett.,84, 2678~2000!#.
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I. INTRODUCTION

The single-parameter scaling~SPS! hypothesis is the cor-
nerstone of the current understanding of the localization phe-
nomena. It was originally formulated in terms of the scaling
behavior of the conductance of disordered conductors,1

where it was suggested that when the length,L, of a disor-
dered conductor increases, the evolution of the conductance,
g(L), is determined by a single parameter,g itself. For one-
dimensional~1D! systems the Landauer’s formula2 expresses
the electron conductance in terms of electron reflection,
R(L), and transmission,T(L), coefficients as g(L)
5T(L)/R(L), and thereby allows considering of electron
transport on an equal footing with, for example, propagation
of light. It was recognized later that SPS must be understood
in terms of properties of the entire distribution ofg ~or T),
and that the most appropriate quantity to deal with is3

g̃~L !5~1/2L !ln@111/g~L !#5~1/2L !ln@1/T~L !#.

In the limit of largeL, this parameter is normally distributed
with the averageg5^g̃(L)&5 lim

L→`
g̃(L) and the variance

s2(L)5^g̃2(L)&2g2. The limiting value ofg̃(L) is known
in the theory of products of random matrices4 as the
Lyapunov exponent~LE!. The inverse quantity, the localiza-
tion length, l loc5g21, determines the main length scale in
the localization regime.5 SPS in this context means that the
variance ofg̃ is not an independent parameter, but it is de-
termined byg itself implying a simple relationship between
two quantities:3

s25g/L. ~1!

This expression was obtained for the one-dimensional model
in Ref. 3 assuming complete randomization of the phases of
complex transmission and reflection coefficients over a mi-
croscopic length scalel ph! l loc ~phase-randomization hy-
pothesis!. Later the phase-randomization hypothesis was
used by many different authors to rederive Eq.~1! ~see, for
instance, Refs. 5,6!, and the inequalityl ph! l loc came to be
regarded as the criterion for SPS. However, there were ear-
lier signs that the phase-randomization hypothesis is neither
necessary nor sufficient condition for SPS to occur. For in-
stance, numerical simulations of Ref. 6 and analytical calcu-
lations of Ref. 7 showed that in the center of a conductivity
band of the 1D Anderson model, SPS holds even though the

phase is not randomized, provided that the disorder is weak.
Later, numerical simulations of a random, periodic-on-
average model8 demonstrated a strong violation of SPS in the
band gaps of the spectrum of the underlined system without
disorder, which existed even for weak disorder and, actually
diminished, when disorder increased. This was contrary to
the behavior found for states from the original conducting
band, for which minor deviations of the variance from Eq.
~1! occured when disorder becomes strong enough.6

The final realization of the fact that the phase randomiza-
tion hypothesis has nothing to do with SPS came in Ref. 9.
In that paper, the variance of LE was calculated exactly for
the Lloyd model and the SPS equation~1! was derived with-
out ad hocassumptions.10 It was found that the emergence of
SPS is governed by a new length scalel s , related to the
integral density of states with the new criterion for SPS be-
ing k5 l loc / l s@1. On the basis of the exact solutions it was
conjectured9 that in the region of the spectrum close to its
original boundary, the parameterl s can be defined in a ge-
neric case as

l s5a/N~E!, ~2!

wherea is the lattice constant andN(E) is the number of
states between the closest genuine boundary of the spectrum
of the disordered system andE, normalized by the total num-
ber of states in the band@such that 0,N(E),1#. It follows
from the established criterion that the violation of SPS oc-
curs in the regions of the spectrum with the depleted differ-
ential density of states. It is well known5 that these regions
correspond to fluctuation states arising outside the initial
spectrum of the system. Therefore, the deviations from SPS
must occur at the gap sides of initial boundaries of the spec-
trum as was observed in Ref. 8. Numerical studies under-
taken in Ref. 9 evidenced that the criterion based upon the
definition of l s given by Eq.~2! was valid for the periodic-
on-average model with rectangular distribution of random
parameters. An additional implication of the results of Ref. 9
is that the random-matrix theory approach, which also repro-
duces Eq.~1!,11,12 does not apply to spectral regions with
depleted differential density of states.

The objective of this paper is to show that two different
scaling regimes governed by the parameterl s found in Ref. 9
exist also in disordered systems with absorption. Having in
mind applications to light propagation in random photonic
band-gap materials, we consider how the inclusion of small
absorption affects scaling properties of transmission. We
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show that the conjectured definition ofl s in terms of the
integral density of states can also be applied to disordered
systems with absorption.

Within the phase-randomization hypothesis approach, sta-
tistics of the transmission in lossy one-dimensional dielec-
trics was considered analytically in a number of papers.13,14

Following Ref. 13 the relation between the variance and the
localization length in the presence of absorption can be pre-
sented in the form

t5t0~b!5112be2bEi~22b!, ~3!

wheret5s2L/g, b5 ł loc / l a , andl a is the absorption length
in the absence of randomness.

Ei~x!5E
2`

x

dt exp~ t !/t

is the exponential integral. In the absence of absorption, Eq.
~3! reduces to the regular SPS formt51. In the two limiting
cases Eq.~3! gives the asymptotest5122b ln(1/b), b
!1 andt51/2b, b@1.

Presuming that the length scalel s retains its meaning in
the case under consideration, we expect that the parametert
deviates from the phase-randomization hypothesis prediction
t0(b) @Eq. ~3!# in the vicinity of the boundaries of the spec-
trum in accordance with the same criterionl loc@ l s as in Ref.
9. Using numerical simulations of a periodic-on-average
one-dimensional lossy system, we show that, indeed, the pa-
rameterk5 l loc / l s sets a valid criterion for validity of Eq.
~3!. As an additional benefit, we demonstrate that within the
range of its validity, Eq.~3! represents a universal, model
independent relation between the variance and the mean
value of LE. The deviations from the phase-randomization-
based results of Ref. 13 studied in our paper must be clearly
distinguished from results of Ref. 15. In the latter paper,

brake down of the phase randomization was obtained in the
case of very strong disorder and strong absorption for states
at the center of the original band. The results of our paper
indicate that~i! violation of the generalized single-parameter
scaling occurs at weak disorders for states close to the band
edge of the original spectrum, (i i ) this violation is not re-
lated to the phase randomization but is controlled by the
parameterl s .

II. MODEL AND THE METHOD OF CALCULATIONS

We consider a classical transverse electromagnetic wave
propagating normally through a stack of alternating dielectric
slabs with dielectric constantse1 ande2. The widths of the
stacks of the first kind is distributed uniformly in the interval
(d12d,d11d) while the width of the others is being kept
constant,d2. The propagation of the waves in the superlattice
consists of free propagation in the slabs and scattering at the
interfaces, where the boundary conditions should be satis-
fied. It can be described using the transfer-matrix formalism
for the vectorvn5(En ,En8/k), whereEn ,En8 are the electric
field and its derivative atnth interface andk5v/c. The pres-
ence of absorption can be accounted for by adding a constant
complex part to the dielectric functions:e15e1

(0)(11 ia)
ande25e2

(0)(11 ia), wherea is a damping coefficient. Vec-
tors on neighboring interfaces are connected via the transfer
matrix

T̂n5S coskndn ~1/kn!sinkndn

2knsinkndn coskndn
D , ~4!

wherekn5kAen. The transfer matrix of the entire system is
T̂(a,L)5Pn51

2N T̂n(a), where L5N(d11^d2&). LE is de-
fined through the transmission coefficient for the superlat-
tice:

g~L,a!52
1

2L
^ lnT~a,L !&52

1

2LK lnU 2 detT̂~a,L !

@ T̂11~a,L#1T̂22~a,L !#2 i @ T̂12~a,L !2T̂21~a,L !#
U2L , ~5!

here^ . . . & denotes the average over an ensemble of configu-
rations. We find that using this definition in numerical simu-
lations has one significant shortcoming. In long systems, the
transmission coefficientT falls bellow the computer roundoff
accuracy. The usual remedy for this problem in the absence
of absorption is to use an alternative definition ofg,

g~L !5
1

2L K ln
uuT̂~L !v0uu2

uuv0uu2 L ~6!

(v0 is a generic vector!, which allows one to consider very
long systems.4 In the presence of absorption, this definition
must be generalized because the simple substitution of the
transfer matrix, Eq.~4!, in this equation would lead to a
wrong result. The problem is that an exponentially growing

eigenvalue of the transfer matrix appears in the denominator
of Eq. ~5!, while in Eq.~6! it is in the numerator. Therefore,
the contribution from absorption enters the final answer for
the LE with different relative signs in these two equation.
We argue that Eq.~6! must be modified in order to agree
with the original definition ofg as follows:

g~L,a!5
1

2L K ln
uuT̂~2a,L !v0uu2

uuv0uu2 L . ~7!

To show the equivalency of Eqs.~5! and ~7! we, first, diag-
onalize the transfer matrixT̂(a,L):

T̂~a,L !5Û†T̂(D)~a,L !Û5Û†S en1(a)2N 0

0 en2(a)2ND Û, ~8!
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here Û and Û† are some unitary matrices. For argument
sake, we assume thatun1(a)u>un2(a)u. Next, we notice the
following relation between eigenvalues of the transfer matrix

n1~a!52n2~2a!, ~9!

which follows simply from the reciprocity of our system.
Indeed, propagation of the waves in the opposite-direction
should be described by the matrixT̂8(a,L)5@ T̂
(2a,L)#21, that leads to Eq.~9!. Now, substituting
T̂(D)(a,L) into Eqs.~5! and~7! ~corrections due to matrices
Û and Û† are negligible in the limitN→`) one obtains
g(L,a)52n2(a) andg(L,a)5n1(a), respectively. Along
with Eq. ~9! this shows that these equations lead to the same
value of LE. To make sure that the statistics ofg(L,a) given
by both equations are also the same, we calculated numeri-
cally distribution functions forg(L,a) using both Eqs.~5!
and~7! for relatively short systems@such that Eq.~5! is still
applicable# and found that they are identical.

III. RESULTS

In numerical simulations we used the following set of
parameterse151.2, e251, and^d1&5d251. The disorder
parameter,d, and the absorption rate,a, were variable pa-
rameters. To calculate the moments ofg, we averaged the
characteristics of systems as long as 100 000 layers over
5000 realizations. The size of the stack was chosen to be at
least five times the localization length or the absorption
length. In the ordered system the first forbidden gap lies
between k51.456 and k51.543. Since the localization
length depends on the frequency of the wave, it is possible to
study the functiont„b(v)… by changing the frequency. First,
we compare our numerical results with the analytical for-
mula of Ref. 13 in the region of frequencies well inside the
first allowed band, where we expect these results to coincide.
Figure 1 shows excellent agreement between the computed
t(b) for 0.86,k,1.4 and Eq.~3!.

The localization length decreases rapidly when the fre-
quency approaches the band edge, while LE, consequently,
increases. As follows from Eq.~1!, in the absence of absorp-
tion, s2 should follow the LE. Figure 2 depicts the depen-

FIG. 1. Open-circles depict the parametert(b) computed for
the periodic-on-average system of 100 000 layers far from the band
edge. 0.86,k,1.4, the disorder parameter isd50.45, the damping
a50.001 25. The solid line showst0(b) given by Eq.~3!.

FIG. 2. The Lyapunov exponentg and its variances in the
vicinity of the first band gap is plotted against the frequency. The
disorder parameter isd50.25, absorption isa50.0025.

FIG. 3. t(0) ~rhombuses!, t(b) ~open circles!, andt0(b) ~solid
line! on the band edge plotted as a function of frequency for the
same set of parameters as in Fig. 2.

FIG. 4. Length scales for the system with parameters used in
Fig. 2. The solid line depictsl s , the dashed line is the localization
length, l loc , and the dotted line is the absorption length,l a .
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dence of LE and its variance with and without absorption. As
one can see, at the band edge,k51.456, SPS breaks down.
Indeed, while LE grows with the increasing frequency, the
variance drops in both cases, with and without absorption.

In order to compare numerical and analytical results in the
presence of absorption, we calculated the parametert as a
function of frequencyk, using the data presented in Fig. 2.
The results are presented in Fig. 3, from which one can see
that the computedt(b) deviates fromt0(b) that represents
Eq. ~3!, and that this deviation occurs at the same frequency
at which t(0) deviates from unity. These graphs convinc-
ingly demonstrate, that even in the presence of absorption,
the spectrum of the system is separated in groups with dif-
ferent scaling properties, and that the boundary between the
groups coincide with the boundary of the original spectrum.

The next question we need to address is whether the tran-
sition between the scaling regimes is governed by the same
parameterl s that was introduced in Ref. 9. According to that
paper, the new parameterl s becomes greater than the local-
ization length at the band edge, which results in a deviation
from SPS. Using definition ofl s suggested in Ref. 9 regard-
ing the integrated density of states, in Eq.~2!, we numeri-
cally calculated this parameter for the system studied in the
present paper. The density of states was calculated using the
phase formalism~see, for instance, Ref. 5! for the system
without absorption. Figure 4 shows all relevant length pa-
rameters: localization length, absorption length, andl s .

At the band edge,l s grows rapidly because very few new
states appear within the former band gap, andN(E) must
already be close to unity at the band edge. It reaches unity at
a new fluctuation boundary of the spectrum near the center
of the gap. We assume that the disorder is not very strong
such that the fluctuation boundaries inside former band gaps
exist. If the disorder is strong enough, or if its statistical
properties are such that the entire band gap is filled with
fluctuation states a definition ofl s is still possible, but the
situation becomes more complicated, and we do not consider
it here. At certain pointsl s grows larger than the localization
length l loc , and one can find comparing Figs. 3 and 4, that
t(b) starts deviating fromt0(b) at the same frequency. In

order to make this more transparent, we plot varioust ’s
versusk5 l loc / l s in Fig. 5.

Without absorption, we see the crossover to SPS in its
pure form atk.1 reported in Refs. 8 and 9. When absorp-
tion is present, the crossover still occurs atk.1, but now to
the modified SPS behaviort0(b). We stress that the cross-
over occurs whilea! l loc!L anda! l a!L so that the sys-
tem remains in the meaningful scaling regime. This demon-
strates that the condition 1!k establishes the criterion for
modified SPS even in the presence of the absorption.

To check that our results are not model specific we also
studied the Anderson model, with absorption introduced as a
nonrandom imaginary part of the on-site random energy. In
the Anderson model without disorder and absorption, there is
a single allowed band formE522 to E52.

Figure 6 shows thatt(b) deviates fromt0(b) at the
edges of the allowed band as would be expected on the basis
of the results presented for the periodic-on-average system.
Inside the conductivity band, numerical and analytical results
show excellent agreement. This is interesting in itself, since
Eq. ~3! was derived for a continuous model,13 and we see
that in the SPS regime it holds also for the tight-binding
discrete model.

In conclusion, we computed the Lyapunov exponent and
its variance for a periodic-on-average layered system and for
the one-dimensional Anderson model. We studied the devia-
tion from the absorption-modified SPS expression for the
variance.13 We showed that the new length scale, introduced
in Ref. 9 in order to explain violation of SPS in the systems
without absorption, retains its significance when absorption
is present. We also showed that the same criterionk
5 l loc / l s@1 derived for lossless systems in Ref. 9 controls
scaling behavior in lossy systems.
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FIG. 5. t(0) ~rhombuses!, t(b) ~open circles!, andt0(b) ~solid
line! on the band edge plotted as a function ofk5 l loc / l s for the
same set of parameters as in Fig. 2.

FIG. 6. t(0) ~rhombuses!, t(b) ~open circles!, andt0(b) ~solid
line! plotted as a function of frequency averaged over 1000 realiza-
tions. The length of the system 10 000 cells, disorder parameterd
50.25, dampinga50.0025.
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