287 research outputs found

    Using mass-flow controllers for obtaining extremely stable ECR ion source beams

    Get PDF
    Original publication available at http://www.jacow.orgInternational audienceBeam stability and reproducibility is of paramount importance in applications requiring precise control of implanted radiation dose, like in the case of Hadrontherapy. The beam intensity over several weeks or months should be kept constant. Moreover, the timing for changing the nature of the beam and, as a consequence, the tuning of the source should be minimized. Standard valves usually used in conjunction of ECR ion sources have the disadvantage of controlling the conductance, which can vary significantly with external conditions, like ambient temperature and inlet pressure of the gas. The use of flow controllers is the natural way for avoiding these external constraints. In this contribution we present the results obtained using a new model of Mass-flow controller in the source Supernanogan, for production of C4+ and H3+ beams. Extremely stable beams (± 2.5%) without retuning of the source over several weeks could be obtained. The reproducibility of the source tuning parameters could also be demonstrated

    ECR Ion sources for radioactive ion beam production

    Get PDF
    17th workshop on ECR Ion Sources and their Applications, Lanzhou, Chine (2006)International audienceECRIS's dedicated to radioactive ion producton must be as efficient as those used for production of stable elements, but in addition they are subject to more specific constraints such as radiation hardness, short atom-to-ion transformation time, beam purity and low cost. Up to now, different target/ion-source system (TISSs) have been designed, using singly-charged ECRISs, multi-charged ion sources or an association of singly-to-multi-charged ECRISs. The main goal, constraints and advantages of different existing ECR setups wil be compared before a more detailed description is given of the one designed for the SPIRAL II project and ist future improvements

    Production of multi-charged phosphorus ions with ecris 'SUPERSHyPIE' at GANIL

    Get PDF
    The Ganil's Ion Production Group tested the source SUPERSHyPIE123 for theproduction of phosphorus n+ ion beams. The SUPERSHyPIE ecris is used for many testsof multi-charged ion production and supply ion beams for LIMBE4 (low energie beamline). This ion source works with a 14.5ghz RF power injected by a circular waveguide inthe axis of the sourc

    Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber

    Full text link
    Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.Comment: submitted to NIMA, 10 pages+4 figures, Latex, uses elsart.cls and grahpic

    Search for a long lived component in the reaction U+U near the Coulomb barrier

    Get PDF
    Expérience GANILInternational audienceWe performed an experiment to search for a signature of a long living component in the collision of 238^{238}U + 238^{238}U between 6.09 and 7.35A MeV. The experiment was performed at GANIL using the spectrometer VAMOS, tuned for observing reactions with kinematics similar to fusion-fission events. Theoretical calculations indicate that if a long living component would exist for this reaction, the most probable fission channel of such a giant system would be via the emissionof quasi-lead nuclei. We detected events of such a category in the focal plane of VAMOS. These events present an excitation function growing as a function of the bombarding energy

    Visible light spectrometry measurements for studying an ECRIS plasma and especially applied to the MONO1001 ion source

    Get PDF
    International audienceThe cylindrical geometry of the magnetic confinement of the MONO1001 ECR ion sourcemade in GANIL1, allows us to measure radial characteristics of the working ECR plasmawith Helium gas. The physical and the geometrical characteristics of the resonance surfaceinside the working ECR source have been quantified with the help of a visible lightspectrometer. Hence, we have deduced a shape of the ECRIS resonance surface whichcorresponds closely to our magnetic calculations

    Ion sources at GANIL

    Get PDF
    International audienceThe GANIL produces since many years heavy ion beams with Electron Cyclotron Resonance ion sources. Different facilities have been constructed during the last years in order to allow experiments in a large range of energy (from some tens of kV to 100 MeV/nucleon). The list of available ions has been greatly extended with the construction of the SPIRAL1 facility that produces and accelerates radioactives ions . An overview of the different developments made at GANIL for stable and radioactive ion beam production including the sources for the SPIRAL2 project is given in this paper

    MONO 1001

    Get PDF
    La source d’ions monochargés MONO 1001 en développement au GANIL, est de type ECR etfonctionne à 2.45ghz.La source MONO1001 a été testée avec les éléments suivants: Hélium, Argon, Néon, krypton,xénon, hydrogène, fer (méthode MIVOC), calcium, erbium, plomb et fullerene (à partir d’une sourced’évaporation), soufre (à partir de SO2 ou SF6)
    corecore