19 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Morphological effects of electrical stimulation and intermittent muscle stretch after immobilization in soleus muscle

    No full text
    The objective of the present study was to assess the effectiveness of a combined protocol of muscle stretching and strengthening after immobilization of the hindlimb. Thirty female Wistar rats were divided into 6 groups: group immobilized for 14 days to cause full plantar flexion by cast (GI, n=6); group immobilized/stretched (GIS, n=6): submitted to the same immobilization and to 10 days of passive stretching; group immobilized/electrically stimulated (GIES, n=6): similarly immobilized and submitted to 10 days of low frequency electrical stimulation (ES); group immobilized/stretched/electrically stimulated (GISES, n=6): similarly immobilized, submitted to 10 days of stretching and ES application; group immobilized/free (GIF, n=3): similarly immobilized and then left with free limbs for 10 days; control group (CG, n=3). The middle portion of the soleus muscle was frozen and sections were stained with HE or mATPase. Morphological analysis revealed high cellular reactivity in the GISES, GIES and GIS groups. The lesser diameter and proportion of type I fibers (TIF) and type II fibers (TIIF) (at pH 9.4) and connective area (at HE stain) were measured with an image analyzer and the data obtained were analyzed statistically by the unpaired Student t-test (p² 0.05). The results indicated that: a) immobilization generated atrophy of both fiber types (p<0.05); b) joint application of ES and stretching was not efficient in reestablishing the size of the two fiber types compared to CG (p<0.05); c) the ES protocol reestablished only the size of TIIF, which showed values similar to those detected in CG (p<0.05); d) the stretch increased the proliferation of the perimysium connective tissue (p>0,05). Thus, we conclude that, in the model applied here to female rats, a stretching protocol may limit the volume protein gain of soleus muscle fibers and increase the connective interstitial tissue

    Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation

    No full text
    The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation

    Mechanical analysis of transversal iliac fracture stabilization using dynamic compression plate or screws and PMM in polyurethane bone model

    No full text
    ABSTRACT Pelvic fractures correspond to 20 to 30 % of the fractures observed in dogs. Complete fractures, especially with bone axis deviation should be surgically treated. The mechanical study of surgical techniques is of utmost importance to assess the best way of treating these injuries. This study compared, biomechanically, the use of a dynamic compression plate (DCP) and screws (group 1) or screws and polymethylmethacrylate (PMMA) (group 2) to stabilize an iliac fracture using a static test. Sixteen canine synthetic hemi-pelvises (test specimens) with a transverse iliac osteotomy were used. After fixation with implants, a load was applied to the acetabulum until failure. Group 1 maximal compressive load was 133.9±18.60 N, displacement at yield 21.10±3.59mm and stiffness 125.22±12.25N/mm. Group 2 maximal compressive load was 183.50±27.38N, displacement at yield 16.66±5.42mm and stiffness 215.68±33.34N/mm. The stabilization with polymethylmethacrylate was stronger than dynamic compression plate since it resisted a greater load in all test specimens

    Analysis of fracture healing in osteopenic bone caused by disuse: experimental study

    No full text
    Osteoporosis has become a serious global public health issue. Hence, osteoporotic fracture healing has been investigated in several previous studies because there is still controversy over the effect osteoporosis has on the healing process. The current study aimed to analyze two different periods of bone healing in normal and osteopenic rats. Sixty, 7-week-old female Wistar rats were randomly divided into four groups: unrestricted and immobilized for 2 weeks after osteotomy (OU2), suspended and immobilized for 2 weeks after osteotomy (OS2), unrestricted and immobilized for 6 weeks after osteotomy (OU6), and suspended and immobilized for 6 weeks after osteotomy (OS6). Osteotomy was performed in the middle third of the right tibia 21 days after tail suspension, when the osteopenic condition was already set. The fractured limb was then immobilized by orthosis. Tibias were collected 2 and 6 weeks after osteotomy, and were analyzed by bone densitometry, mechanical testing, and histomorphometry. Bone mineral density values from bony calluses were significantly lower in the 2-week post-osteotomy groups compared with the 6-week post-osteotomy groups (multivariate general linear model analysis, P<0.000). Similarly, the mechanical properties showed that animals had stronger bones 6 weeks after osteotomy compared with 2 weeks after osteotomy (multivariate general linear model analysis, P<0.000). Histomorphometry indicated gradual bone healing. Results showed that osteopenia did not influence the bone healing process, and that time was an independent determinant factor regardless of whether the fracture was osteopenic. This suggests that the body is able to compensate for the negative effects of suspension

    Role of the oblique ligament in the integrity of the medial collateral ligament of the canine elbow joint

    No full text
    Foram estudados o arranjo e o diâmetro médio das fibrilas colágenas do ligamento colateral medial da articulação do cotovelo do cão, isolado ou associado ao ligamento oblíquo e tracionado até a ruptura. Dezoito articulações foram divididas em três grupos. O primeiro grupo teve o ligamento colateral medial coletado, mas não tracionado; o segundo grupo teve o ligamento colateral medial tracionado isoladamente; o terceiro grupo teve os ligamentos colateral medial e oblíquo tracionados associadamente. O ligamento colateral medial não submetido ao ensaio de tração apresentou um padrão ondulado das fibras colágenas, o qual não foi totalmente destruído quando foi tracionado, associado ao ligamento oblíquo, e perdeu totalmente o padrão reticular das fibras colágenas quando testado isoladamente. Quando o ligamento colateral medial foi submetido à tensão isoladamente, o diâmetro médio das fibrilas colágenas aumentou em relação ao grupo não submetido à tensão. Associado ao ligamento oblíquo, o diâmetro médio das fibrilas colágenas foi o maior na região de inserção e o menor na região média, em relação aos outros grupos. Concluiu-se que o ligamento oblíquo pode favorecer a integridade da região de inserção do ligamento colateral medial, aumentando a eficácia de sua reconstrução após a lesão.It was studied the arrangement of the collagen fibrils of the medial collateral ligament of the canine elbow joint and evaluated its diameter, when it was isolated or associated to the oblique ligament and loaded in tension until failure. Eighteen joints were divided in three groups. The first group had the medial collateral ligament collected and not loaded, the second group had the medial collateral ligament tested separately and the third group had both ligaments associately tested. Medial collateral ligament not submitted to strain presented a wavy and reticular pattern of the collagen fibers, which was not totally destroyed when it was loaded associated to the oblique ligament, and totally loses the reticular pattern when stretched separately. When the medial collateral ligament was loaded in tension separately, the mean collagen fibrils diameter increased in relation to the group not submitted to the tensile strain. Associated to the oblique ligament, the mean collagen fibrils diameter was the largest in the insertion area and the smallest in the mid-substance, in relation to the other groups. It was concluded that the oblique ligament could favor the integrity of the medial collateral ligament insertion area, facilitating its reconstruction after lesion with larger efficiency

    High-impact exercise in rats prior to and during suspension can prevent bone loss

    No full text
    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension

    Bridging Plate Development For Treatment Of Segmental Bone Defects Of The Canine Mandible: Mechanical Tests And Finite Element Method

    No full text
    With regard to the canine mandible, a mistaken concept of application is to assume that systemic plate-bone resistance is provided by the implant so that biomechanical position could be ignored. Because the alveolar border of the mandible is a tensile zone, the plate would ideally be positioned near this area while avoiding important structures. The aim of this study was to develop 2 bridging plates for the treatment of a segmental bone defect of the canine mandible using monocortical screws to avoid damage to the tooth roots and remaining neurovascular structures. Computed tomography images of the heads of 4 dogs (rottweiler, Doberman, boxer, and miniature poodle breeds) were used as models to develop the project. The images were reconstructed in 3-dimensional (3D) format. For each dog breed, 6 mandible prototypes were produced, each with a segmental bone defect in the right mandible. The mandibular reconstruction was performed with pure titanium bridging plate and locking screws. One plate model was developed for medium- and large-breed dogs and another for small-breed dogs. Mechanical testing showed the platemandible system resists the bite forces in all dog breeds. All safety factors were greater than 1 in the platemandible system for medium- and large-breed dogs and greater than 10 in the plate-mandible system for small-breed dogs. Thus, bridging plates designed with differentiated geometry and monocortical locking screws showed mechanical resistance to support simulated induced bone model defects and were able to support at least 5 times the value of bite force for each evaluated dog. © The Author(s) 2016.331182
    corecore