123 research outputs found

    Estimation of badger abundance using faecal DNA typing

    Get PDF
    1.Wildlife management and conservation programmes often require accurate information on population density, but this can be difficult to obtain, particularly when the species in question is nocturnal or cryptic. Badger populations in Britain are of intense management interest because they are a wildlife reservoir host of bovine tuberculosis (TB). Attempts to manage this infection in badgers, whether by population control or vaccination, require reliable methods of estimating population size. In addition, such estimates are also required to support research into badger ecology and TB epidemiology. Currently, the most accurate estimates of local badger population size are obtained from labour-intensive and time-consuming mark–recapture studies. 2. In recent years, DNA has been successfully extracted from the faeces of certain mammals, and used to generate a genetic profile of the defecating individual. Here we report on an application of this technology to estimate badger abundance.3.Faecal samples were collected on 10 consecutive days from every freshly deposited dropping at latrine sites close to occupied setts in three badger social groups. Badger DNA was extracted from 89% of samples, and 20 different individuals were reliably identified. The genotypes derived from the faecal samples were compared with those obtained from blood or samples from badgers live trapped at the same setts.4.The faecal genotypes from badgers with known trap histories revealed that latrines were used equally by males and females, and by badgers ranging in age from cubs(< 1 year old) to 9 years old. Individual badgers used the latrines on between one and six different nights. Rarefaction analysis produced abundance estimates that closely matched those obtained from live trapping. 5.Synthesis and applications. Systematic sampling and genetic typing of fresh faeces from badger latrines can provide data that can be used to estimate abundance accurately.This approach requires considerably less human resources than repeated live trapping and mark–recapture. The technique may be valuable for future badger research and management in relation to bovine TB, where accurate estimates of abundance at a local scale are required

    Quantifying uncertainty in inferences of landscape genetic resistance due to choice of individual‐based genetic distance metric

    Get PDF
    Estimates of gene flow resulting from landscape resistance inferences frequently inform conservation management decision-making processes. Therefore, results must be robust across approaches and reflect real-world gene flow instead of methodological artefacts. Here, we tested the impact of 32 individual-based genetic distance metrics on the robustness and accuracy of landscape resistance modelling results. We analysed three empirical microsatellite datasets and 36 simulated datasets that varied in landscape resistance and genetic spatial autocorrelation. We used ResistanceGA to generate optimised multi-feature resistance surfaces for each of these datasets using 32 different genetic distance metrics. Results of the empirical dataset demonstrated that the choice of genetic distance metric can have strong impacts on inferred optimised resistance surfaces. Simulations showed accurate parametrisation of resistance surfaces across most genetic distance metrics only when a small number of environmental features was impacting gene flow. Landscape scenarios with many features impacting gene flow led to a generally poor recovery of true resistance surfaces. Simulation results also emphasise that choosing a genetic distance metric should not be based on marginal R2-based model fit. Until more robust methods are available, resistance surfaces can be optimised with different genetic distance metrics and the convergence of results needs to be assessed via pairwise matrix correlations. Based on the results presented here, high correlation coefficients across different genetic distance categories likely indicate accurate inference of true landscape resistance. Most importantly, empirical results should be interpreted with great caution, especially when they appear counter-intuitive in light of the ecology of a species

    Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland

    Get PDF
    Understanding the size and spatial distribution of material stocks is crucial for sustainable resource management and climate change mitigation. This study presents high-resolution maps of buildings and mobility infrastructure stocks for the United Kingdom (UK) and the Republic of Ireland (IRL) at 10 m, combining satellite-based Earth observations, OpenStreetMaps, and material intensities research. Stocks in the UK and IRL amount to 19.8 Gigatons or 279 tons/cap, predominantly aggregate, concrete and bricks, as well as various metals and timber. Building stocks per capita are surprisingly similar across medium to high population density, with only the lowest population densities having substantially larger per capita stocks. Infrastructure stocks per capita decrease with higher population density. Interestingly, for a given building stock within an area, infrastructure stocks are substantially larger in IRL than in the UK. These maps can provide useful insights for sustainable urban planning and advancing a circular economy

    Conservation by trans-border cooperation: population genetic structure and diversity of geoffroy’s bat (Myotis emarginatus) at its north-western european range edge

    Get PDF
    In the European Union, all bat species are strictly protected and member states must ensure their conservation. However, if populations are genetically structured, conservation units that correspond to whole countries may be too large, putting small populations with specific conservation requirements at risk. Geoffroy’s bat (Myotis emarginatus) has undergone well-documented declines at its north-western European range edge between the 1960 and 1990s and is considered to be negatively affected by habitat fragmentation. Here we analysed the species’ genetic population structure and diversity to identify subpopulations with reduced genetic diversity and to scientifically inform conservation management. We generated 811 microsatellite-based genetic profiles obtained from 42 European nursery colonies and analysed a total of 932 sequences of the hypervariable region II of the mitochondrial control region sampled from across Europe. While two geographically widespread genetic populations were inferred to be present in north-western Europe, both nuclear and mitochondrial genetic diversity were lowest in the areas that had experienced a decline during the last century. A microsatellite-based analysis of demographic history did not permit, however, to unequivocally link that reduced genetic diversity to the population contraction event. Given the large geographic extent of the genetic populations, preserving the connectivity of mating sites requires concerted conservation efforts across multiple political jurisdictions. Genetic monitoring ought to be done on a regular basis to ensure that large-scale connectivity is maintained and further loss of genetic diversity is prevented

    Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events

    Get PDF
    The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi’s fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructionswithgenetic andmorphometric datasets derived from Sulawesi’s three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesiwas driven by geological events over the last few million years

    Molecular analyses of groundwater amphipods (Crustacea: Niphargidae) from Luxembourg: new species reveal limitations of morphology-based checklists

    No full text
    Niphargus amphipods were collected from 2007 to 2018 at 98 sites comprising artificial caverns, springs and interstitial waters in the Grand Duchy of Luxembourg. Opportunistic sampling was combined with passive trapping. Specimen identification was achieved using morphological keys and molecular data. Initial morphological determination and literature data suggested five species, whereas sequencing of fragments of the mitochondrial cytochrome c oxidase subunit 1 gene and nuclear 28S rDNA marker supported the presence of seven species: Niphargus schellenbergi, Niphargus puteanus, Niphargus fontanus, one species of the Niphargus kochianus complex, and three species of the Niphargus aquilex complex. Niphargus schellenbergi was by far the most abundant and widespread species. Limited overlap was observed between literature-based records, our initial morphological determinations based on classical taxonomic characters, and genetic sequence data. In general, the combination of phenotypically variable taxa, such as N. schellenbergi, and cryptic or near-cryptic species, as in the N. aquilex complex, renders morphological identification of niphargids from Luxembourg a challenging or even impossible task. DNA taxonomy will therefore have to be used in future studies of the fauna of this region. info:eu-repo/semantics/publishe

    Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France

    No full text
    Red deer have been subjected to anthropogenic interference for many centuries. Most populations are managed according to hunting schedules, some have been kept long-term in enclosures and other populations have been restocked with foreign deer. The red deer in the Brittany region of north-western France only occupy the largest forests in the region, reaching quite high densities in restricted areas. Here, we aimed to assess the extent of the genetic variability of the populations in four forest fragments and investigate their population genetic structure. We show that, despite relatively large expected heterozygosity values, these geographically isolated populations are genetically impoverished relative to individuals from large continuous forests in other parts of Western Europe. We provide evidence for population genetic structure with large genetic differentiation between geographically close populations, suggesting the absence of effective exchange between the forests. Using samples from the most likely source population, we show that at least two populations were non-indigenous. In order to limit further loss of genetic diversity, it should be a management objective to reduce isolation of the different forests, rather than further increase it by fences and hunting practices that could limit free movement of red deer. © 2011 Springer Science+Business Media B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Similar yet different: co-analysis of the genetic diversity and structure of an invasive nematode parasite and its invasive mammalian host

    No full text
    Animal parasitic nematodes can cause serious diseases and their emergence in new areas can be an issue of major concern for biodiversity conservation and human health. Their ability to adapt to new environments and hosts is likely to be affected by their degree of genetic diversity, with gene flow between distinct populations counteracting genetic drift and increasing effective population size. The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal parasite of the raccoon (Procyon lotor), has increased its global geographic range after being translocated with its host. The raccoon has been introduced multiple times to Germany, but not all its populations are infected with the parasite. While fewer introduced individuals may have led to reduced diversity in the parasite, admixture between different founder populations may have counteracted genetic drift and bottlenecks. Here, we analyse the population genetic structure of the roundworm and its raccoon host at the intersection of distinct raccoon populations infected with B. procyonis. We found evidence for two parasite clusters resulting from independent introductions. Both clusters exhibited an extremely low genetic diversity, suggesting small founding populations subjected to inbreeding and genetic drift with no, or very limited, genetic influx from population admixture. Comparison of the population genetic structures of both host and parasite suggested that the parasite spread to an uninfected raccoon founder population. On the other hand, an almost perfect match between cluster boundaries also suggested that the population genetic structure of B. procyonis has remained stable since its introduction, mirroring that of its raccoon host
    • 

    corecore