160 research outputs found

    Jet color chemistry and anomalous baryon production in AAAA-collisions

    Full text link
    We study anomalous high-pTp_T baryon production in AAAA-collisions due to formation of the two parton collinear gqgq system in the anti-sextet color state for quark jets and gggg system in the decuplet/anti-decuplet color states for gluon jets. Fragmentation of these states, which are absent for NNNN-collisions, after escaping from the quark-gluon plasma leads to baryon production. Our qualitative estimates show that this mechanism can be potentially important at RHIC and LHC energies.Comment: 20 pages, 4 figures, Eur.Phys.J. versio

    Conformal Hamiltonian Dynamics of General Relativity

    Get PDF
    The General Relativity formulated with the aid of the spin connection coefficients is considered in the finite space geometry of similarity with the Dirac scalar dilaton. We show that the redshift evolution of the General Relativity describes the vacuum creation of the matter in the empty Universe at the electroweak epoch and the dilaton vacuum energy plays a role of the dark energy.Comment: 9 pages, 1 figure, submitted to PL

    Leading neutron spectra

    Full text link
    It is shown that the observation of the spectra of leading neutrons from proton beams can be a good probe of absorptive and migration effects. We quantify how these effects modify the Reggeized pion-exchange description of the measurements of leading neutrons at HERA. We are able to obtain a satisfactory description of all the features of these data. We also briefly discuss the corresponding data for leading baryons produced in hadron-hadron collisions.Comment: 17 pages, 8 figures; sentence and reference added, reference corrected, to be published in EPJ

    GG-Strands

    Get PDF
    A GG-strand is a map g(t,s):R×RGg(t,{s}):\,\mathbb{R}\times\mathbb{R}\to G for a Lie group GG that follows from Hamilton's principle for a certain class of GG-invariant Lagrangians. The SO(3)-strand is the GG-strand version of the rigid body equation and it may be regarded physically as a continuous spin chain. Here, SO(3)KSO(3)_K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincar\'e system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian, the SO(3)KSO(3)_K-strand is mapped into a completely integrable generalization of the classical chiral model for the SO(3)-strand. Analogous results are obtained for the Sp(2)Sp(2)-strand. The Sp(2)Sp(2)-strand is the GG-strand version of the Sp(2)Sp(2) Bloch-Iserles ordinary differential equation, whose solutions exhibit dynamical sorting. Numerical solutions show nonlinear interactions of coherent wave-like solutions in both cases. Diff(R){\rm Diff}(\mathbb{R})-strand equations on the diffeomorphism group G=Diff(R)G={\rm Diff}(\mathbb{R}) are also introduced and shown to admit solutions with singular support (e.g., peakons).Comment: 35 pages, 5 figures, 3rd version. To appear in J Nonlin Sc

    Nuclear Shadowing in DIS: Numerical Solution of the Evolution Equation for the Green Function

    Get PDF
    Within a light-cone QCD formalism based on the Green function technique incorporating color transparency and coherence length effects we study nuclear shadowing in deep-inelastic scattering at moderately small Bjorken x_{Bj}. Calculations performed so far were based only on approximations leading to an analytical harmonic oscillatory form of the Green function. We present for the first time an exact numerical solution of the evolution equation for the Green function using realistic form of the dipole cross section and nuclear density function. We compare numerical results for nuclear shadowing with previous predictions and discuss differences.Comment: 21 pages including 3 figures; a small revision of the tex

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Baxterization, dynamical systems, and the symmetries of integrability

    Full text link
    We resolve the `baxterization' problem with the help of the automorphism group of the Yang-Baxter (resp. star-triangle, tetrahedron, \dots) equations. This infinite group of symmetries is realized as a non-linear (birational) Coxeter group acting on matrices, and exists as such, {\em beyond the narrow context of strict integrability}. It yields among other things an unexpected elliptic parametrization of the non-integrable sixteen-vertex model. It provides us with a class of discrete dynamical systems, and we address some related problems, such as characterizing the complexity of iterations.Comment: 25 pages, Latex file (epsf style). WARNING: Postscript figures are BIG (600kB compressed, 4.3MB uncompressed). If necessary request hardcopy to [email protected] and give your postal mail addres
    corecore