4,046 research outputs found

    How much charm can PANDA produce?

    Full text link
    We consider the production of charmed baryons and mesons in the proton-antiproton binary reactions at the energies of the future Pˉ\bar{P}ANDA experiment. To describe these processes in terms of hadronic interaction models, one needs strong couplings of the initial nucleons with the intermediate and final charmed hadrons. Similar couplings enter the models of binary reactions with strange hadrons. For both charmed and strange hadrons we employ the strong couplings and their ratios calculated from QCD light-cone sum rules. In this method finite masses of cc and ss quarks are taken into account. Employing the Kaidalov's quark-gluon string model with Regge poles and adjusting the normalization of the amplitudes in this model to the calculated strong couplings, we estimate the production cross section of charmed hadrons. For ppˉ→ΛcΛˉcp\bar{p}\to \Lambda_c\bar{\Lambda}_c it can reach several tens of nbnb at plab=15GeVp_{lab}= 15 {GeV}, whereas the cross sections of Σc\Sigma_c and DD pair production are predicted to be smaller.Comment: 22 pages, 6 figures, matches published versio

    Evolution of Parton Fragmentation Functions at Finite Temperature

    Get PDF
    The first order correction to the parton fragmentation functions in a thermal medium is derived in the leading logarithmic approximation in the framework of thermal field theory. The medium-modified evolution equations of the parton fragmentation functions are also derived. It is shown that all infrared divergences, both linear and logarithmic, in the real processes are canceled among themselves and by corresponding virtual corrections. The evolution of the quark number and the energy loss (or gain) induced by the thermal medium are investigated.Comment: 21 pages in RevTex, 10 figure

    Surface spin-flop and discommensuration transitions in antiferromagnets

    Full text link
    Phase diagrams as a function of anisotropy DD and magnetic field HH are obtained for discommensurations and surface states for an antiferromagnet in which HH is parallel to the easy axis, by modeling it using the ground states of a one-dimensional chain of classical XY spins. A surface spin-flop phase exists for all DD, but the interval in HH over which it is stable becomes extremely small as DD goes to zero. First-order transitions, separating different surface states and ending in critical points, exist inside the surface spin-flop region. They accumulate at a field H′H' (depending on DD) significantly less than the value HSFH_{SF} for a bulk spin-flop transition. For H′<H<HSFH' < H < H_{SF} there is no surface spin-flop phase in the strict sense; instead, the surface restructures by, in effect, producing a discommensuration infinitely far away in the bulk. The results are used to explain in detail the phase transitions occurring in systems consisting of a finite, even number of layers.Comment: Revtex 17 pages, 15 figure

    The structure of parafermion vertex operator algebras

    Get PDF
    It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.Comment: 12 page

    Ab initio determination of exchange integrals and Neel temperature in the chain cuprates

    Full text link
    We report ab initio quantum chemical cluster calculations of the chain (J_a) and the largest interchain (J_b) Heisenberg exchange of the chain cuprates Ca_2CuO_3 and Sr_2CuO_3. We find that J_a is comparable to the in-plane J in layered cuprates and J_a/J_b ~250-400. Using recent theory we obtain close agreement with experiment for the staggered moments and the critical temperatures. This implies that T_N does not depend on the third parameter J_c << J_b, and cannot be calculated using spin-wave theory. We propose an explanation for this interms of a 1D->2D cross-over.Comment: ps, 19 pages. To appear in Chemical Physics Letter

    Phase diagrams of the generalized spin-1/2 ladder under staggered field and dimerization: A renormalization group study

    Full text link
    In the weak-coupling regime of the continuous theories, two sets of one-loop renormalization group equations are derived and solved to disclose the phase diagrams of the antiferromagnetic generalized two-leg spin-1/2 ladder under the effect of (I) a staggered external magnetic field and (II) an explicit dimerization. In model (I), the splitting of the SU(2)2_2 critical line into U(1) and Z2_2 critical surfaces is observed; while in model (II), two critical surfaces arising from their underlying critical lines with SU(2)2_2 and Z2_2 characteristics merge into an SU(2)1_1 critical surface on the line where the model attains its highest symmetry.Comment: 10 pages, 9 figure

    First principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained CMR films

    Full text link
    We performed first - principles relativistic full-potential linearized augmented plane wave calculations for strained tetragonal ferromagnetic La(Ba)MnO3_3 with an assumed experimental structure of thin strained tetragonal La0.67_{0.67}Ca0.33_{0.33}MnO3_3 (LCMO) films grown on SrTiO3_3[001] and LaAlO3_3[001] substrates. The calculated uniaxial magnetic anisotropy energy (MAE) values, are in good quantitative agreement with experiment for LCMO films on SrTiO3_3 substrate. We also analyze the applicability of linear magnetoelastic theory for describing the stain dependence of MAE, and estimate magnetostriction coefficient λ001\lambda_{001}.Comment: Talk given at APS99 Meeting, Atlanta, 199

    Electron transport in the dye sensitized nanocrystalline cell

    Full text link
    Dye sensitised nanocrystalline solar cells (Gr\"{a}tzel cells) have achieved solar-to-electrical energy conversion efficiencies of 12% in diffuse daylight. The cell is based on a thin film of dye-sensitised nanocrystalline TiO2_2 interpenetrated by a redox electrolyte. The high surface area of the TiO2_2 and the spectral characteristics of the dye allow the device to harvest 46% of the solar energy flux. One of the puzzling features of dye-sensitised nano-crystalline solar cells is the slow electron transport in the titanium dioxide phase. The available experimental evidence as well as theoretical considerations suggest that the driving force for electron collection at the substrate contact arises primarily from the concentration gradient, ie the contribution of drift is negligible. The transport of electrons has been characterised by small amplitude pulse or intensity modulated illumination. Here, we show how the transport of electrons in the Gr\"{a}tzel cell can be described quantitatively using trap distributions obtained from a novel charge extraction method with a one-dimensional model based on solving the continuity equation for the electron density. For the first time in such a model, a back reaction with the I3−_3^- ions in the electrolyte that is second order in the electron density has been included.Comment: 6 pages, 5 figures, invited talk at the workshop 'Nanostructures in Photovoltaics' to appear in Physica

    A Weak Gravity Conjecture for Scalar Field Theories

    Full text link
    We show that the recently proposed weak gravity conjecture\cite{AMNV0601} can be extended to a class of scalar field theories. Taking gravity into account, we find an upper bound on the gravity interaction strength, expressed in terms of scalar coupling parameters. This conjecture is supported by some two-dimensional models and noncommutative field theories.Comment: version published in JHE

    iGPS capability study

    Get PDF
    This report presents the results of testing of the Metris iGPS system performed by the National Physical Laboratory (NPL) and the University of Bath (UoB), with the assistance of Metris, and Airbus at Airbus, Broughton in March 2008. The aim of the test was to determine the performance capability of the iGPS coordinate metrology system by comparison with a reference measurement system based on multilateration implemented using laser trackers. A network of reference points was created using SMR nests fixed to the ground and above ground level on various stands. The reference points were spread out within the measurement volume of approximately 10 m ´ 10 m ´ 2 m. The coordinates of each reference point were determined by the laser tracker survey using multilateration. The expanded uncertainty (k=2) in the relative position of these reference coordinates was estimated to be of the order of 10 µm in x, y and z. A comparison between the iGPS system and the reference system showed that for the test setup, the iGPS system was able to determine lengths up to 12 m with an uncertainty of 170 µm (k=2) and coordinates with an uncertainty of 120 µm in x and y and 190 µm in z (k=2)
    • …
    corecore