208 research outputs found
On the use of a single site approximation to describe correlation in pure metals
The magnetic properties of pure transition-like metals are discussed within
the single site approximation, to take into account the electron correlation.
The metal is described by two hybridized bands one of which includes the
Coulomb correlation. Our results indicate that ferromagnetism follows from
adequate values of the correlation and hybridization.Comment: 2 pages and 2 figure
Phase transitions in two-dimensional anisotropic quantum magnets
We consider quantum Heisenberg ferro- and antiferromagnets on the square
lattice with exchange anisotropy of easy-plane or easy-axis type. The
thermodynamics and the critical behaviour of the models are studied by the
pure-quantum self-consistent harmonic approximation, in order to evaluate the
spin and anisotropy dependence of the critical temperatures. Results for
thermodynamic quantities are reported and comparison with experimental and
numerical simulation data is made. The obtained results allow us to draw a
general picture of the subject and, in particular, to estimate the value of the
critical temperature for any model belonging to the considered class.Comment: To be published on Eur. Phys. J.
Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule
We study the Aharonov-Bohm effect in a coupled 22 quantum dot array
with two-terminals. A striking conductance dip arising from the Fano
interference is found as the energy levels of the intermediate dots are
mismatched, which is lifted in the presence of a magnetic flux. A novel five
peak structure is observed in the conductance for large mismatch. The
Aharonov-Bohm evolution of the linear conductance strongly depends on the
configuration of dot levels and interdot and dot-lead coupling strengths. In
addition, the magnetic flux and asymmetry between dot-lead couplings can induce
the splitting and combination of the conductance peak(s).Comment: 15 pages, 7 figures, Revtex, to be published in Phys. Rev.
Phonon-drag effects on thermoelectric power
We carry out a calculation of the phonon-drag contribution to the
thermoelectric power of bulk semiconductors and quantum well structures for the
first time using the balance equation transport theory extended to the weakly
nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation
times due to phonon-phonon interactions, the formula obtained can be used not
only at low temperatures where the phonon mean free path is determined by
boundary scattering, but also at high temperatures. In the linear transport
limit, is equivalent to the result obtained from the Boltzmann equation
with a relaxation time approximation. The theory is applied to experiments and
agreement is found between the theoretical predictions and experimental
results. The role of hot-electron effects in is discussed. The importance
of the contribution of to thermoelectric power in the hot-electron
transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques
Nonquasiparticle states in half-metallic ferromagnets
Anomalous magnetic and electronic properties of the half-metallic
ferromagnets (HMF) have been discussed. The general conception of the HMF
electronic structure which take into account the most important correlation
effects from electron-magnon interactions, in particular, the spin-polaron
effects, is presented. Special attention is paid to the so called
non-quasiparticle (NQP) or incoherent states which are present in the gap near
the Fermi level and can give considerable contributions to thermodynamic and
transport properties. Prospects of experimental observation of the NQP states
in core-level spectroscopy is discussed. Special features of transport
properties of the HMF which are connected with the absence of one-magnon
spin-flip scattering processes are investigated. The temperature and magnetic
field dependences of resistivity in various regimes are calculated. It is shown
that the NQP states can give a dominate contribution to the temperature
dependence of the impurity-induced resistivity and in the tunnel junction
conductivity. First principle calculations of the NQP-states for the prototype
half-metallic material NiMnSb within the local-density approximation plus
dynamical mean field theory (LDA+DMFT) are presented.Comment: 27 pages, 9 figures, Proceedings of Berlin/Wandlitz workshop 2004;
Local-Moment Ferromagnets. Unique Properties for Moder Applications, ed. M.
Donath, W.Nolting, Springer, Berlin, 200
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at GeV
Identified mid-rapidity particle spectra of , , and
from 200 GeV p+p and d+Au collisions are reported. A
time-of-flight detector based on multi-gap resistive plate chamber technology
is used for particle identification. The particle-species dependence of the
Cronin effect is observed to be significantly smaller than that at lower
energies. The ratio of the nuclear modification factor () between
protons and charged hadrons () in the transverse momentum
range GeV/c is measured to be
(stat)(syst) in minimum-bias collisions and shows little
centrality dependence. The yield ratio of in minimum-bias d+Au
collisions is found to be a factor of 2 lower than that in Au+Au collisions,
indicating that the Cronin effect alone is not enough to account for the
relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from
transverse momentum 1.8 GeV/c to 3. GeV/
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
- …