344 research outputs found

    Evaluation of airflow movement within a broiler shed with roof ventilation system during summer

    Get PDF
    Indoor conditions of broiler sheds are influenced by environmental parameters such as temperature, relative humidity and air movement. Air temperature and relative humidity contribute mainly to the heat stress in broilers and are controlled by air velocity. Roof ventilated broiler sheds are designed to mechanically force air into a confined space through a negative pressure. They have bottom-hinged inlets and roof fans. In summer, the air inlets of the broiler sheds are usually opened fully, in addition to the mechanical fans in 100% operation to ensure broiler chickens are properly ventilated to prevent heat stress. Surprisingly, no information on the practice of farmers during summer in roof ventilated broiler shed is available. Hence, this work was carried out to assess air movement within a roof ventilated broiler shed during summer. The results of this work indicated that opening the inlets fully during summer may not improve the air movement at the animal microclimate. The average air velocities at the animal microclimate were found to be between 0.30 and 0.40 m s−1 in an empty broiler shed compared to the occupied broiler shed which varied from 0.10 and 0.20 m s−1. Therefore, this work has shown that airflow at the birds' microclimate inside the broiler shed are mainly influenced by the birds themselves, inlet opening technique and distance from the sidewall

    Recovering Joys Law as a Function of Solar Cycle, Hemisphere, and Longitude

    Full text link
    Bipolar active regions in both hemispheres tend to be tilted with respect to the East West equator of the Sun in accordance with Joys law that describes the average tilt angle as a function of latitude. Mt. Wilson observatory data from 1917 to 1985 are used to analyze the active-region tilt angle as a function of solar cycle, hemisphere, and longitude, in addition to the more common dependence on latitude. Our main results are as follows: i) We recommend a revision of Joys law toward a weaker dependence on latitude (slope of 0.13 to 0.26) and without forcing the tilt to zero at the Equator. ii) We determine that the hemispheric mean tilt value of active regions varies with each solar cycle, although the noise from a stochastic process dominates and does not allow for a determination of the slope of Joys law on an 11-year time scale. iii) The hemispheric difference in mean tilt angles, 1.1 degrees + 0.27, over Cycles 16 to 21 was significant to a three-sigma level, with average tilt angles in the northern and southern hemispheres of 4.7 degrees + 0.26 and 3.6 degrees + 0.27 respectively. iv) Area-weighted mean tilt angles normalized by latitude for Cycles 15 to 21 anticorrelate with cycle strength for the southern hemisphere and whole-Sun data, confirming previous results by Dasi-Espuig, Solanki, Krivova, et al. (2010, Astron. Astrophys. 518, A7). The northern hemispheric mean tilt angles do not show a dependence on cycle strength. vi) Mean tilt angles do not show a dependence on longitude for any hemisphere or cycle. In addition, the standard deviation of the mean tilt is 29 to 31 degrees for all cycles and hemispheres indicating that the scatter is due to the same consistent process even if the mean tilt angles vary.Comment: 13 pages, 4 figures, 3 table

    Spectral Inversion of Multi-Line Full-Disk Observations of Quiet Sun Magnetic Fields

    Full text link
    Spectral inversion codes are powerful tools to analyze spectropolarimetric observations, and they provide important diagnostics of solar magnetic fields. Inversion codes differ by numerical procedures, approximations of the atmospheric model, and description of radiative transfer. Stokes Inversion based on Response functions (SIR) is an implementation widely used by the solar physics community. It allows to work with different atmospheric components, where gradients of different physical parameters are possible, e.g., magnetic field strength and velocities. The spectropolarimetric full-disk observations were carried out with the Stokesmeter of the Solar Telescope for Operative Predictions (STOP) at the Sayan Observatory on 3 February 2009, when neither an active region nor any other extended flux concentration was present on the Sun. In this study of quiet Sun magnetic fields, we apply the SIR code simultaneously to 15 spectral lines. A tendency is found that weaker magnetic field strengths occur closer to the limb. We explain this finding by the fact that close to the limb, we are more sensitive to higher altitudes in an expanding flux tube, where the field strength should be smaller since the magnetic flux is conserved with height. Typically, the inversions deliver two populations of magnetic elements: (1) high magnetic field strengths (1500-2000 G) and high temperatures (5500-6500 K) and (2) weak magnetic fields (50-150 G) and low temperatures (5000-5300 K).Comment: 10 pages, 6 figures, accepted for Solar Physic

    Corporate financing decisions: UK survey evidence

    Get PDF
    Despite theoretical developments in recent years, our understanding of corporate capital structure remains incomplete. Prior empirical research has been dominated by archival regression studies which are limited in their ability to fully reflect the diversity found in practice. The present paper reports on a comprehensive survey of corporate financing decision-making in UK listed companies. A key finding is that firms are heterogeneous in their capital structure policies. About half of the firms seek to maintain a target debt level, consistent with trade-off theory, but 60 per cent claim to follow a financing hierarchy, consistent with pecking order theory. These two theories are not viewed by respondents as either mutually exclusive or exhaustive. Many of the theoretical determinants of debt levels are widely accepted by respondents, in particular the importance of interest tax shield, financial distress, agency costs and also, at least implicitly, information asymmetry. Results also indicate that cross-country institutional differences have a significant impact on financial decisions

    Structural Invariance of Sunspot Umbrae Over the Solar Cycle: 1993-2004

    Full text link
    Measurements of maximum magnetic flux, minimum intensity, and size are presented for 12 967 sunspot umbrae detected on the NASA/NSO spectromagnetograms between 1993 and 2004 to study umbral structure and strength during the solar cycle. The umbrae are selected using an automated thresholding technique. Measured umbral intensities are first corrected for a confirming observation of umbral limb-darkening. Log-normal fits to the observed size distribution confirm that the size spectrum shape does not vary with time. The intensity-magnetic flux relationship is found to be steady over the solar cycle. The dependence of umbral size on the magnetic flux and minimum intensity are also independent of cycle phase and give linear and quadratic relations, respectively. While the large sample size does show a low amplitude oscillation in the mean minimum intensity and maximum magnetic flux correlated with the solar cycle, this can be explained in terms of variations in the mean umbral size. These size variations, however, are small and do not substantiate a meaningful change in the size spectrum of the umbrae generated by the Sun. Thus, in contrast to previous reports, the observations suggest the equilibrium structure, as testified by the invariant size-magnetic field relationship, as well as the mean size (i.e. strength) of sunspot umbrae do not significantly depend on solar cycle phase.Comment: 17 pages, 6 figures. Published in Solar Physic

    Disorder Effects in Two-Dimensional d-wave Superconductors

    Full text link
    Influence of weak nonmagnetic impurities on the single-particle density of states ρ(ω)\rho(\omega) of two-dimensional electron systems with a conical spectrum is studied. We use a nonperturbative approach, based on replica trick with subsequent mapping of the effective action onto a one-dimensional model of interacting fermions, the latter being treated by Abelian and non-Abelian bosonization methods. It is shown that, in a d-wave superconductor, the density of states, averaged over randomness, follows a nontrivial power-law behavior near the Fermi energy: ρ(ω)ωα\rho(\omega) \sim |\omega|^{\alpha}. The exponent α>0\alpha>0 is calculated for several types of disorder. We demonstrate that the property ρ(0)=0\rho(0) = 0 is a direct consequence of a {\it continuous} symmetry of the effective fermionic model, whose breakdown is forbidden in two dimensions. As a counter example, we consider another model with a conical spectrum - a two-dimensional orbital antiferromagnet, where static disorder leads to a finite ρ(0)\rho(0) due to breakdown of a {\it discrete} (particle-hole) symmetry.Comment: 24 pages, 3 figures upon request, RevTe

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables

    Full text link
    While the {\it Helioseismic and Magnetic Imager} (HMI) onboard the {\it Solar Dynamics Observatory} (SDO) provides Doppler velocity [VV], continuum intensity [ICI_C], and line-depth [LdLd] observations, each of which is sensitive to the five-minute acoustic spectrum, the {\it Atmospheric Imaging Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700 Angstrom bands -- that are partly formed in the upper photosphere and have good sensitivity to acoustic modes. In this article we consider the characteristics of the spatio--temporal Fourier spectra in AIA and HMI observables for a 15-degree region around NOAA Active Region 11072. We map the spatio--temporal-power distribution for the different observables and the HMI Line Core [ILI_L], or Continuum minus Line Depth, and the phase and coherence functions for selected observable pairs, as a function of position and frequency. Five-minute oscillation power in all observables is suppressed in the sunspot and also in plage areas. Above the acoustic cut-off frequency, the behaviour is more complicated: power in HMI ICI_C is still suppressed in the presence of surface magnetic fields, while power in HMI ILI_L and the AIA bands is suppressed in areas of surface field but enhanced in an extended area around the active region, and power in HMI VV is enhanced in a narrow zone around strong-field concentrations and suppressed in a wider surrounding area. The relative phase of the observables, and their cross-coherence functions, are also altered around the active region. These effects may help us to understand the interaction of waves and magnetic fields in the different layers of the photosphere, and will need to be taken into account in multi-wavelength local helioseismic analysis of active regions.Comment: 18 pages, 15 figures, to be published in Solar Physic

    VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager

    Full text link
    In this paper we describe in detail the implementation and main properties of a new inversion code for the polarized radiative transfer equation (VFISV: Very Fast inversion of the Stokes vector). VFISV will routinely analyze pipeline data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar Dynamics Observatory (SDO). It will provide full-disk maps (4096×\times4096 pixels) of the magnetic field vector on the Solar Photosphere every 10 minutes. For this reason VFISV is optimized to achieve an inversion speed that will allow it to invert 16 million pixels every 10 minutes with a modest number (approx. 50) of CPUs. Here we focus on describing a number of important details, simplifications and tweaks that have allowed us to significantly speed up the inversion process. We also give details on tests performed with data from the spectropolarimeter on-board of the Hinode spacecraft.Comment: 23 pages, 9 figures (2 color). Submitted for publication to Solar Physic

    Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project

    Full text link
    Results of a multi-color study of the variability of the magnetic cataclysmic variable BY Cam are presented. The observations were obtained at the Korean 1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56 observational runs cover 189 hours. The variations of the mean brightness in different colors are correlated with a slope dR/dV=1.29(4), where the number in brackets denotes the error estimates in the last digits. For individual runs, this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value of 1.11(1). Near the maximum, the slope becomes smaller for some nights, indicating more blue spectral energy distribution, whereas the night-to-night variability has an infrared character. For the simultaneous UBVRI photometry, the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such wavelength dependence is opposite to that observed in non-magnetic cataclysmic variables, in an agreement to the model of cyclotron emission. The principal component analysis shows two (with a third at the limit of detection) components of variablitity with different spectral energy distribution, which possibly correspond to different regions of emission. The scalegram analysis shows a highest peak corresponding to the 200-min spin variability, its quarter and to the 30-min and 8-min QPOs. The amplitudes of all these components are dependent on wavelength and luminosity state. The light curves were fitted by a statistically optimal trigonometrical polynomial (up to 4-th order) to take into account a 4-hump structure. The dependences of these parameters on the phase of the beat period and on mean brightness are discussed. The amplitude of spin variations increases with an increasing wavelength and with decreasing brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy
    corecore