1,823 research outputs found

    The Marine Machine: the Making of United States Marine

    Get PDF

    Impacts of improved grazing land management on sediment yields, Part 1: Hillslope processes.

    Get PDF
    Summary Poor land condition resulting from unsustainable grazing practices can reduce enterprise profitability and increase water, sediment and associated nutrient runoff from properties and catchments. This paper presents the results of a 6 year field study that used a series of hillslope flume experiments to evaluate the impact of improved grazing land management (GLM) on hillslope runoff and sediment yields. The study was carried out on a commercial grazing property in a catchment draining to the Burdekin River in northern Australia. During this study average ground cover on hillslopes increased from ~35% to ~75%, although average biomass and litter levels are still relatively low for this landscape type (~60 increasing to 1100 kg of dry matter per hectare). Pasture recovery was greatest on the upper and middle parts of hillslopes. Areas that did not respond to the improved grazing management had <10% cover and were on the lower slopes associated with the location of sodic soil and the initiation of gullies. Comparison of ground cover changes and soil conditions with adjacent properties suggest that grazing management, and not just improved rainfall conditions, were responsible for the improvements in ground cover in this study. The ground cover improvements resulted in progressively lower runoff coefficients for the first event in each wet season, however, runoff coefficients were not reduced at the annual time scale. The hillslope annual sediment yields declined by ~70% on two out of three hillslopes, although where bare patches (with <10% cover) were connected to gullies and streams, annual sediment yields increased in response to higher rainfall in latter years of the study. It appears that bare patches are the primary source areas for both runoff and erosion on these hillslopes. Achieving further reductions in runoff and erosion in these landscapes may require management practices that improve ground cover and biomass in bare areas, particularly when they are located adjacent to concentrated drainage lines

    NorKing Russet, A New Potato Variety

    Get PDF
    This article gives background into the breeding history that lead to the potato variety named Nor King Russet. It resulted from a cross between Nooksack and ND9567-2Russ. Nooksack is a russet variety grown for processing (french fry) in the northwestern states and ND9567-2Russ resulted from a cross between two number selections that have Norchip and B5141-6 in their pedigrees

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D

    Enhancement of pair correlation in a one-dimensional hybridization model

    Get PDF
    We propose an integrable model of one-dimensional (1D) interacting electrons coupled with the local orbitals arrayed periodically in the chain. Since the local orbitals are introduced in a way that double occupation is forbidden, the model keeps the main feature of the periodic Anderson model with an interacting host. For the attractive interaction, it is found that the local orbitals enhance the effective mass of the Cooper-pair-like singlets and also the pair correlation in the ground state. However, the persistent current is depressed in this case. For the repulsive interaction case, the Hamiltonian is non-Hermitian but allows Cooper pair solutions with small momenta, which are induced by the hybridization between the extended state and the local orbitals.Comment: 11 page revtex, no figur

    Melvin solution in string theory

    Full text link
    We identify a string theory counterpart of the dilatonic Melvin D=4 background describing a "magnetic flux tube" in low-energy field theory limit. The corresponding D=5 bosonic string model containing extra compact Kaluza-Klein dimension is a direct product of the D=2 Minkowski space and a D=3 conformal sigma model. The latter is a singular limit of the [SL(2,R) x R]/R gauged WZW theory. This implies, in particular, that the dilatonic Melvin background is an exact string solution to all orders in \a'. Moreover, the D=3 model is formally related by an abelian duality to a flat space with a non-trivial topology. The conformal field theory for the Melvin solution is exactly solvable (and for special values of magnetic field parameter is equivalent to CFT for a ZNZ_N orbifold of 2-plane times a circle) and should exhibit tachyonic instabilities.Comment: 12 pages, harvmac (substantial revision, especially of the part discussing the structure of the corresponding conformal theory

    Universality in the Screening Cloud of Dislocations Surrounding a Disclination

    Full text link
    A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented. The analytical results show that the combined system behaves as a single disclination with an effective fractional charge which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high accuracy. The numerical approach, based on a generalization from previous work by S. Seung and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own and allows to compute the energy for an {\em arbitrary} distribution of defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy} with very minor additional computational effort. Some implications for recent experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file

    Curved, extended classical solutions I. The undulating kink

    Full text link
    The energy of extended classical objects, such as vortices, depends on their shape. In particular, we show that the curvature energy of a kink in two spatial dimensions, as a prototype of extended classical solutions, is always negative. We obtain a closed form for the curvature energy, assuming small deviations from the straight line.Comment: 7 pages, LaTe

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications
    corecore