1,466 research outputs found

    Adding a Brane to the Brane-Anti-Brane Action in BSFT

    Full text link
    We attempt to generalize the effective action for the D-brane-anti-D-brane system obtained from boundary superstring field theory (BSFT) by adding an extra D-brane to it to obtain a covariantized action for 2 D-branes and 1 anti-D-brane. We discuss the approximations made to obtain the effective action in closed form. Among other properties, this effective action admits solitonic solutions of codimension 2 (vortices) when one of the D-brane is far separated from the brane-anti-brane pair.Comment: 23 pages, 2 figures, minor revision

    Theory of Luminescent Emission in Nanocrystal ZnS:Mn with an Extra Electron

    Full text link
    We consider the effect of an extra electron injected into a doped quantum dot ZnS:Mn2+ZnS:Mn^{2+}. The Coulomb interaction and the exchange interaction between the extra electron and the states of the Mn ion will mix the wavefunctions, split the impurity energy levels, break the previous selection rules and change the transition probabilities. Using this model of an extra electron in the doped quantum dot, we calculated the energy and the wavefunctions, the luminescence probability and the transition lifetime and compare with the experiments. Our calculation shows that two orders of magnitudes of lifetime shortening can occur in the transition 4T16A1^4T_1-^6A_1 when an extra electron is present.Comment: 15 pages, 2 Figs No change in Fig

    PtdIns(4,5)P2 Functions at the Cleavage Furrow during Cytokinesis

    Get PDF
    SummaryPhosphoinositides play important roles in regulating the cytoskeleton and vesicle trafficking, potentially important processes at the cleavage furrow. However, it remains unclear which, if any, of the phosphoinositides play a role during cytokinesis. A systematic analysis to determine if any of the phosphoinositides might be present or of functional importance at the cleavage furrow has not been published. Several studies hint at a possible role for one or more phosphoinositides at the cleavage furrow. The best of these are genetic data identifying mutations in phosphoinositide-modifying enzymes (a PtdIns(4)P-5-kinase in S. pombe [1, 2] and a PI-4-kinase in D. melanogaster [3]) that interfere with cytokinesis. The genetic nature of these experiments leaves questions as to how direct may be their contribution to cytokinesis. Here we show that a single phosphoinositide, PtdIns(4,5)P2, specifically accumulates at the furrow. Interference with PtdIns(4,5)P2 interferes with adhesion of the plasma membrane to the contractile ring at the furrow. Finally, four distinct interventions to specifically interfere with PtdIns(4,5)P2 each impair cytokinesis. We conclude that PtdIns(4,5)P2 is present at the cleavage furrow and is required for normal cytokinesis at least in part because of a role in adhesion between the contractile ring and the plasma membrane

    On the energy-momentum tensor for a scalar field on manifolds with boundaries

    Full text link
    We argue that already at classical level the energy-momentum tensor for a scalar field on manifolds with boundaries in addition to the bulk part contains a contribution located on the boundary. Using the standard variational procedure for the action with the boundary term, the expression for the surface energy-momentum tensor is derived for arbitrary bulk and boundary geometries. Integral conservation laws are investigated. The corresponding conserved charges are constructed and their relation to the proper densities is discussed. Further we study the vacuum expectation value of the energy-momentum tensor in the corresponding quantum field theory. It is shown that the surface term in the energy-momentum tensor is essential to obtain the equality between the vacuum energy, evaluated as the sum of the zero-point energies for each normal mode of frequency, and the energy derived by the integration of the corresponding vacuum energy density. As an application, by using the zeta function technique, we evaluate the surface energy for a quantum scalar field confined inside a spherical shell.Comment: 25 pages, 2 figures, section and appendix on the surface energy for a spherical shell are added, references added, accepted for publication in Phys. Rev.

    Reaction of nitrous oxide with methane to produce synthesis gas (CO + H2); a thermodynamic and catalytic analysis

    Get PDF
    A thermodynamic and kinetic (experimental) study of N2O with CH4 to synthesis gas (H2+CO) formation was investigated under various reaction conditions. The experimental study was carried out over Co-ZSM-5 as catalyst in a fixed bed reactor. The effect of temperature (270 °C -570 °C) and molar feed ratio (N2O/CH4 = 1, 3, and 5) was examined in order to determine conditions for maximizing H2 yield. The results show that for the molar feed ratios (N2O/CH4) of 1 and 3, N2O is the limiting reactant. The thermodynamic and kinetic analyses of the reaction having a limiting N2O reactant in reactant feed (N2O/CH4) shows that H2 yield steadily increased with increase in temperature and the level of CH4 conversion. Furthermore, the maximum attainable (from thermodynamic calculations) H2 yield at 550°C is about 20%. While thermodynamic predictions of H2 yield drops to zero in presence of excess of N2O in reactant feed (N2O/CH4 = 5). Over Co-ZSM-5 catalyst and with a molar reactant feed ratio (N2O/CH4) of 5, the H2 yield first increases to 10 % with rise in temperature and then drops to zero at relatively higher range of temperatures (above 425°C). The synthesis gas production from partial oxidation of CH4 with N2O may not be an alternative route to existing industrial practice; however, the fractional substitution of O2 with N2O in the partial oxidation of CH4 could lead to emission reductions. This will also give a new route for H2 generation

    On the relation of Thomas rotation and angular velocity of reference frames

    Get PDF
    In the extensive literature dealing with the relativistic phenomenon of Thomas rotation several methods have been developed for calculating the Thomas rotation angle of a gyroscope along a circular world line. One of the most appealing concepts, introduced in \cite{rindler}, is to consider a rotating reference frame co-moving with the gyroscope, and relate the precession of the gyroscope to the angular velocity of the reference frame. A recent paper \cite{herrera}, however, applies this principle to three different co-moving rotating reference frames and arrives at three different Thomas rotation angles. The reason for this apparent paradox is that the principle of \cite{rindler} is used for a situation to which it does not apply. In this paper we rigorously examine the theoretical background and limitations of applicability of the principle of \cite{rindler}. Along the way we also establish some general properties of {\it rotating reference frames}, which may be of independent interest.Comment: 14 pages, 2 figure

    Stress-energy tensor for a quantised bulk scalar field in the Randall-Sundrum brane model

    Full text link
    We calculate the vacuum expectation value of the stress-energy tensor for a quantised bulk scalar field in the Randall-Sundrum model, and discuss the consequences of its local behaviour for the self-consistency of the model. We find that, in general, the stress-energy tensor diverges in the vicinity of the branes. Our main conclusion is that the stress-energy tensor is sufficiently complicated that it has implications for the effective potential, or radion stabilisation, methods that have so far been used.Comment: 16 pages, 3 figures. Minor changes made and references added. To appear in Phys. Rev.

    LERW as an example of off-critical SLEs

    Get PDF
    Two dimensional loop erased random walk (LERW) is a random curve, whose continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter kappa=2. In this article we study ``off-critical loop erased random walks'', loop erasures of random walks penalized by their number of steps. On one hand we are able to identify counterparts for some LERW observables in terms of symplectic fermions (c=-2), thus making further steps towards a field theoretic description of LERWs. On the other hand, we show that it is possible to understand the Loewner driving function of the continuum limit of off-critical LERWs, thus providing an example of application of SLE-like techniques to models near their critical point. Such a description is bound to be quite complicated because outside the critical point one has a finite correlation length and therefore no conformal invariance. However, the example here shows the question need not be intractable. We will present the results with emphasis on general features that can be expected to be true in other off-critical models.Comment: 45 pages, 2 figure

    Wightman function and scalar Casimir densities for a wedge with two cylindrical boundaries

    Full text link
    Wightman function, the vacuum expectation values of the field square and the energy-momentum tensor are investigated for a massive scalar field with general curvature coupling parameter inside a wedge with two coaxial cylindrical boundaries. It is assumed that the field obeys Dirichlet boundary condition on bounding surfaces. The application of a variant of the generalized Abel-Plana formula enables to extract from the expectation values the contribution corresponding to the geometry of a wedge with a single shell and to present the interference part in terms of exponentially convergent integrals. The local properties of the vacuum are investigated in various asymptotic regions of the parameters. The vacuum forces acting on the boundaries are presented as the sum of self-action and interaction terms. It is shown that the interaction forces between the separate parts of the boundary are always attractive. The generalization to the case of a scalar field with Neumann boundary condition is discussed.Comment: 19 pages, 3 figure
    corecore