892 research outputs found
Obesogenic Built Environment: Concepts and Complexities
Obesity is an issue of global concern. Obesity rates have risen rapidly in the recent past with an associated increase in a number of related serious health conditions. While the basic equation behind human obesity seems simple â too much energy consumed, too little energy expended â the causes are complex and multi-factorial, including biological, psychological, sociological and economic influences. Swinburn et al coined the term âobesogenic environmentâ as the âsum of influences, opportunities, or conditions of lifeâ that promote obesity in individuals or populations (1999), an all-encompassing concept that includes the built environment. While establishing causal pathways between the built environment and obesity has been notoriously difficult, the Foresight report (2007) suggested there was enough expert evidence to implicate the built environment in the obesity crisis â calling for greater consideration of the issue in urban planning
Jet disc coupling in black hole binaries
In the last decade multi-wavelength observations have demonstrated the
importance of jets in the energy output of accreting black hole binaries. The
observed correlations between the presence of a jet and the state of the
accretion flow provide important information on the coupling between accretion
and ejection processes. After a brief review of the properties of black hole
binaries, I illustrate the connection between accretion and ejection through
two particularly interesting examples. First, an INTEGRAL observation of Cygnus
X-1 during a 'mini-' state transition reveals disc jet coupling on time scales
of orders of hours. Second, the black hole XTEJ1118+480 shows complex
correlations between the X-ray and optical emission. Those correlations are
interpreted in terms of coupling between disc and jet on time scales of seconds
or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets -
from Planets to Quasars. Accepted for publication in Astrophysics & Space
Scienc
Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei
At luminosities below a few percent of Eddington, accreting black holes
switch to a hard spectral state which is very different from the soft
blackbody-like spectral state that is found at higher luminosities. The hard
state is well-described by a two-temperature, optically thin, geometrically
thick, advection-dominated accretion flow (ADAF) in which the ions are
extremely hot (up to K near the black hole), the electrons are also
hot ( K), and thermal Comptonization dominates the X-ray
emission. The radiative efficiency of an ADAF decreases rapidly with decreasing
mass accretion rate, becoming extremely low when a source reaches quiescence.
ADAFs are expected to have strong outflows, which may explain why relativistic
jets are often inferred from the radio emission of these sources. It has been
suggested that most of the X-ray emission also comes from a jet, but this is
less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on
All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as
a special edition of "Astrophysics and Space Science" by Kluwe
Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm
The general picture that emerged by the end of 1990s from a large set of
optical and X-ray, spectral and timing data was that the X-rays are produced in
the innermost hot part of the accretion flow, while the optical/infrared (OIR)
emission is mainly produced by the irradiated outer thin accretion disc. Recent
multiwavelength observations of Galactic black hole transients show that the
situation is not so simple. Fast variability in the OIR band, OIR excesses
above the thermal emission and a complicated interplay between the X-ray and
the OIR light curves imply that the OIR emitting region is much more compact.
One of the popular hypotheses is that the jet contributes to the OIR emission
and even is responsible for the bulk of the X-rays. However, this scenario is
largely ad hoc and is in contradiction with many previously established facts.
Alternatively, the hot accretion flow, known to be consistent with the X-ray
spectral and timing data, is also a viable candidate to produce the OIR
radiation. The hot-flow scenario naturally explains the power-law like OIR
spectra, fast OIR variability and its complex relation to the X-rays if the hot
flow contains non-thermal electrons (even in energetically negligible
quantities), which are required by the presence of the MeV tail in Cyg X-1. The
presence of non-thermal electrons also lowers the equilibrium electron
temperature in the hot flow model to <100 keV, making it more consistent with
observations. Here we argue that any viable model should simultaneously explain
a large set of spectral and timing data and show that the hybrid
(thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews
and as hard cover in the Space Sciences Series of ISSI - The Physics of
Accretion on to Black Holes (Springer Publisher
Accretion and ejection in black-hole X-ray transients
Aims: We summarize the current observational picture of the outbursts of
black-hole X-ray transients (BHTs), based on the evolution traced in a
hardness-luminosity diagram (HLD), and we offer a physical interpretation.
Methods: The basic ingredient in our interpretation is the Poynting-Robertson
Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the
poloidal magnetic field needed for the ejection of the jet. In addition, we
make two assumptions, easily justifiable. The first is that the mass-accretion
rate to the black hole in a BHT outburst has a generic bell-shaped form. This
is guaranteed by the observational fact that all BHTs start their outburst and
end it at the quiescent state. The second assumption is that at low accretion
rates the accretion flow is geometrically thick, ADAF-like, while at high
accretion rates it is geometrically thin.
Results: Both, at the beginning and the end of an outburst, the PRCB
establishes a strong poloidal magnetic field in the ADAF-like part of the
accretion flow, and this explains naturally why a jet is always present in the
right part of the HLD. In the left part of the HLD, the accretion flow is in
the form of a thin disk, and such a disk cannot sustain a strong poloidal
magnetic filed. Thus, no jet is expected in this part of the HLD. The
counterclockwise traversal of the HLD is explained as follows: the poloidal
magnetic field in the ADAF forces the flow to remain ADAF and the source to
move upwards in the HLD rather than to turn left. Thus, the history of the
system determines the counterclockwise traversal of the HLD. As a result, no
BHT is expected to ever traverse the entire HLD curve in the clockwise
direction.
Conclusions: We offer a physical interpretation of accretion and ejection in
BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&
Global well-posedness for the KP-I equation on the background of a non localized solution
We prove that the Cauchy problem for the KP-I equation is globally well-posed
for initial data which are localized perturbations (of arbitrary size) of a
non-localized (i.e. not decaying in all directions) traveling wave solution
(e.g. the KdV line solitary wave or the Zaitsev solitary waves which are
localized in and periodic or conversely)
The balance of power: accretion and feedback in stellar mass black holes
In this review we discuss the population of stellar-mass black holes in our
galaxy and beyond, which are the extreme endpoints of massive star evolution.
In particular we focus on how we can attempt to balance the available accretion
energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole
spin and advection. We review quantitatively the methods which are used to
estimate these quantities, regardless of the details of the astrophysics close
to the black hole. Once these methods have been outlined, we work through an
outburst of a black hole X-ray binary system, estimating the flow of mass and
energy through the different accretion rates and states. While we focus on
feedback from stellar mass black holes in X-ray binary systems, we also
consider the applicability of what we have learned to supermassive black holes
in active galactic nuclei. As an important control sample we also review the
coupling between accretion and feedback in neutron stars, and show that it is
very similar to that observed in black holes, which strongly constrains how
much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture
Notes in Physics. Springer 201
Theoretical overview on high-energy emission in microquasars
Microquasar (MQ) jets are sites of particle acceleration and synchrotron
emission. Such synchrotron radiation has been detected coming from jet regions
of different spatial scales, which for the instruments at work nowadays appear
as compact radio cores, slightly resolved radio jets, or (very) extended
structures. Because of the presence of relativistic particles and dense photon,
magnetic and matter fields, these outflows are also the best candidates to
generate the very high-energy (VHE) gamma-rays detected coming from two of
these objects, LS 5039 and LS I +61 303, and may be contributing significantly
to the X-rays emitted from the MQ core. In addition, beside electromagnetic
radiation, jets at different scales are producing some amount of leptonic and
hadronic cosmic rays (CR), and evidences of neutrino production in these
objects may be eventually found. In this work, we review on the different
physical processes that may be at work in or related to MQ jets. The jet
regions capable to produce significant amounts of emission at different
wavelengths have been reduced to the jet base, the jet at scales of the order
of the size of the system orbital semi-major axis, the jet middle scales (the
resolved radio jets), and the jet termination point. The surroundings of the
jet could be sites of multiwavelegnth emission as well, deserving also an
insight. We focus on those scenarios, either hadronic or leptonic, in which it
seems more plausible to generate both photons from radio to VHE and high-energy
neutrinos. We briefly comment as well on the relevance of MQ as possible
contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the
conference: The multimessenger approach to the high-energy gamma-ray
sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables
(one reference corrected
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
- âŠ