8,567 research outputs found

    Testing Higgs models via the H±W∓ZH^\pm W^\mp Z vertex by a recoil method at the International Linear Collider

    Full text link
    In general, charged Higgs bosons H±H^\pm appear in non-minimal Higgs models. The H±W∓ZH^\pm W^\mp Z vertex is known to be related to the violation of the global symmetry (custodial symmetry) in the Higgs sector. Its magnitude strongly depends on the structure of the exotic Higgs models which contain higher isospin SU(2)LSU(2)_L representations such as triplet Higgs bosons. We study the possibility of measuring the H±W∓ZH^\pm W^\mp Z vertex via single charged Higgs boson production associated with the W±W^\pm boson at the International Linear Collider (ILC) by using the recoil method. The feasibility of the signal e+e−→H±W∓→ℓνjje^+e^-\to H^\pm W^\mp \to \ell \nu jj is analyzed assuming the polarized electron and positron beams and the expected detector performance for the resolution of the two-jet system at the ILC. The background events can be reduced to a considerable extent by imposing the kinematic cuts even if we take into account the initial state radiation. For a relatively light charged Higgs boson whose mass mH±m_{H^\pm} is in the region of 120-130 GeV <mH±<mW+mZ< m_{H^\pm} < m_W+m_Z, the H±W∓ZH^\pm W^\mp Z vertex would be precisely testable especially when the decay of H±H^\pm is lepton specific. The exoticness of the extended Higgs sector can be explored by using combined information for this vertex and the rho parameter.Comment: 22 pages, 23 figure

    Interpretation Of The Space Bandwidth Product As The Entropy Of Distinctconnection Patterns In Multifacet Optical Interconnection Architectures

    Get PDF
    Cataloged from PDF version of article.We show that the entropy of the distinct connection patterns that are possible with multifacet optical interconnection architectures is approximately equal to the space-bandwidth product of the optical system

    Chirp filtering in the fractional Fourier Domain

    Get PDF
    Cataloged from PDF version of article.In the Wigner domain of a one-dimensional function, a certain chirp term represents a rotated line delta function. On the other hand, a fractional Fourier transform (FRT) can be associated with a rotation of the Wigner-distribution function by an angle connected with the FRT order. Thus with the FRT tool a chirp and a delta function can be transformed one into the other. Taking the chirp as additive noise, the FRT is used for filtering the line delta function in the appropriate fractional Fourier domain. Experimental filtering results for a Gaussian input function, which is modulated by an additive chirp noise, are shown. Excellent agreement between experiments and computer simulations is achieved

    Fourier transforming a trapped Bose-Einstein condensate by waiting a quarter of the trap period: simulation and applications

    Get PDF
    We investigate the property of isotropic harmonic traps to Fourier transform a weakly interacting Bose–Einstein condensate (BEC) every quarter of a trap period. We solve the Gross–Pitaevskii equation numerically to investigate the time evolution of interacting BECs in the context of the Fourier transform, and we suggest potential applications

    Measurement of the Higgs Boson Mass with a Linear e+e- Collider

    Full text link
    The potential of a linear e+e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4.Comment: 19 pages, 10 Figure

    Identification problems of muon and electron events in the Super-Kamiokande detector

    Get PDF
    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.Comment: 17 pages, 12 figure

    Spin polarization of the Ar* 2p−11/2 4s and 2p−11/2 3d resonant Auger decay

    Full text link
    The spin-resolved Auger decay of the Ar 2p−11/2 3d state was measured at moderate energy resolution and compared with the decay of the 2p−11/2 4s. The former shows a lower transferred spin polarization and a similar, if not higher, dynamical spin polarization, supporting the statement that a fully resolved spectrum is not a necessary condition for observing dynamical spin polarization. An interpretation of the spin polarization as configuration interaction induced effect in the final ionic state leads to partial agreement with our relativistic distorted wave calculation utilizing a 36 configuration state function basis set. Comparison of the experimental and numerical results leads to ambiguities for at least one Auger line. A hypothetical, qualitative interpretation is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58121/2/b7_17_012.pd

    Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity

    Get PDF
    International audienceFactors controlling the distribution of relative humidity above ice saturation in the upper troposphere and lower stratosphere in the presence of cirrus clouds are examined with the help of microphysical trajectory simulations using a box model. Our findings are related to results from recent field campaigns and global model studies. We suggest that the relative humidities at which ice crystals form in the atmosphere can be inferred from in situ measurements of water vapor and temperature close to, but outside of, cirrus clouds. The comparison with similar measurements performed inside cirrus clouds provides a clue to freezing mechanisms active in cirrus. The comparison with field data reveals distinct interhemispheric differences in cirrus cloud freezing thresholds. Combining the present findings with recent results addressing the frequency distributions of updraft speeds and cirrus ice crystal number densities (Kärcher and Ström, 2993} provides evidence for the existence of complex heterogeneous freezing mechanisms in cirrus, at least in the polluted northern hemisphere, and further emphasizes the key role of gravity wave-induced dynamical variability in vertical air motion at the mesoscale. The key features of distributions of upper tropospheric relative humidity simulated by a global climate model are shown to be in general agreement with both, microphysical simulations and field observations, delineating a feasible method to include and validate ice supersaturation in other large-scale models of the atmosphere, in particular chemistry-transport and weather forecast models

    Fractional Fourier Transform- Simulations and experimental results

    Get PDF
    Cataloged from PDF version of article.Recently two optical interpretations of the fractional Fourier transform operator were introduced. We address implementation issues of the fractional-Fourier-transform operation. We show that the original bulk-optics configuration for performing the fractional-Fourier-transform operation 3J. Opt. Soc. Am. A 10, 2181 1199324 provides a scaled output using a fixed lens. For obtaining a non-scaled output, an asymmetrical setup is suggested and tested. For comparison, computer simulations were performed. A good agreement between computer simulations and experimental results was obtained
    • …
    corecore