1,315 research outputs found

    Issues and Implications of Implementing Surcharges to Improve the U.S. Balance of Trade

    Get PDF
    Throughout the 1970s and early 1980s, increasing positive balances on the services account provided a substantial offset to negative balances in merchandise trade, and, consequently, the cumulative current balance was a positive $3.8 billion for the period 1970-80. Since 1981, the progressively smaller balances in services have been insufficient to offset the increasingly negative merchandise trade balances. Table 1-1 shows the deterioration in U.S. international accounts during this period

    Active current sheets and hot flow anomalies in Mercury's bow shock

    Full text link
    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration and heating as predicted by previous numerical simulations. Together with earlier observations of HFA activity at Earth, Venus and Saturn, our results confirm that hot flow anomalies are a common property of planetary bow shocks, and show that the characteristic size of these events is of the order of one planetary radius.Comment: 39 pages, 15 figures, 2 table

    Overexpression of the RieskeFeS protein increasese electron transport rates and biomass yield

    Get PDF
    In this study, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII,electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity

    Feeding the world: improving photosynthetic efficiency for sustainable crop production

    Get PDF
    A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin–Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe

    Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth

    Get PDF
    Abstract The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants.</jats:p

    Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco

    Get PDF
    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12-19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields

    Detecting negative ions on board small satellites

    Full text link
    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury’s space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.Key PointsSurface interactions with dust grains in the heliosphere and near the moon can produce anionsThe contribution of anions to the heliosphere and lunar environment is largely unknownAIPS is a small compact, yet capable anion sensor for use on small satellitesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137433/1/jgra53416_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137433/2/jgra53416.pd

    GGD 37: An Extreme Protostellar Outflow

    Get PDF
    We present the first Spitzer-IRS spectral maps of the Herbig-Haro flow GGD 37 detected in lines of [Ne III], [O IV], [Ar III], and [Ne v]. The detection of extended [O IV] (55 eV) and some extended emission in [Ne v] (97 eV) indicates a shock temperature in excess of 100,000 K, in agreement with X-ray observations, and a shock speed in excess of 200 km s(-1). The presence of an extended photoionization or collisional ionization region indicates that GGD 37 is a highly unusual protostellar outflow.Jet Propulsion Laboratory, under NASA 1407NASA 1257184Jet Propulsion Laboratory (JPL) 960803University of Rochester 31419-5714Astronom

    Groundwater : meltwater interaction in a proglacial aquifer

    Get PDF
    Groundwater plays a significant role in the hydrology of active glacial catchments, with evidence that it may buffer changes in meltwater river flow and partially compensate for glacial loss. However, to date there has been little direct research into the hydrogeology and groundwater dynamics of proglacial aquifers. Here we directly investigate the three dimensional nature of a proglacial sandur (floodplain) aquifer in SE Iceland, using hydrogeological, geophysical, hydrological and stable isotopic techniques, and provide evidence of groundwater-melt water dynamics over three years. We show that the proglacial sandur forms a thick (at least 50-100 m), high permeability (transmissivity up to 2500 m2/day) aquifer, extending over an area of approximately 6 km2. At least 35 million m3 of groundwater is stored in the aquifer, equivalent to ~23-28% of total annual river flow through the catchment. The volume of mean annual groundwater flow through the aquifer is at least 0.1-1 m3/sec, equivalent to ~10-20% of mean annual river flow. Groundwater across the aquifer is actively recharged from local precipitation and strongly influenced by individual rainfall events and seasonal precipitation. Glacial meltwater influence on groundwater also occurs in a zone extending from 20-500 m away from the meltwater river, for at least 3km down-sandur, and to at least 15 m deep. Within this zone summer recharge from the river to groundwater occurs when meltwater river flows are high, maintaining high summer groundwater levels compared to winter levels; and groundwater temperature and chemistry are strongly influenced by meltwater. Beyond this zone there is no substantial meltwater influence on groundwater. From ~2 km down-sandur there is extensive groundwater discharge via springs, supporting semi-perennial streams that form distinct local ecosystems, and providing baseflow to the main meltwater river. This research indicates that predicted continued climate change-related reductions in glacier coverage and increases in precipitation are likely to increase the significance of groundwater storage as a water resource, and of groundwater discharges in maintaining environmental river flows in glacier catchments

    The Initial Configuration of Young Stellar Clusters: A K-band Number Counts Analysis of the Surface Density of Stars

    Full text link
    We present an analysis of K-band stellar distributions for the young stellar clusters GGD 12-15, IRAS 20050+2720, and NGC 7129. We find that the two deeply embedded clusters, GGD 12-15 and IRAS 20050+2720, are not azimuthally symmetric and show a high degree of structure which traces filamentary structure observed in 850 micron emission maps. In contrast, the NGC 7129 cluster is circularly symmetric, less dense, and anti-correlated to 850 micron emission, suggesting recent gas expulsion and dynamical expansion have occured. We estimate stellar volume densities from nearest neighbor distances, and discuss the impact of these densities on the evolution of circumstellar disks and protostellar envelopes in these regions.Comment: 44 pages, 26 figures, Accepted to ApJ. Changes include extinction mapping, Monte Carlo field star modeling, and Nyquist sampled azimuthal stellar distributions. A version with full resolution figures is available at http://astro.pas.rochester.edu/~rguter/preprints/gutermuth_sd.tar.g
    • …
    corecore