16 research outputs found

    Spatial variability of the parameters of a semi-distributed hydrological model

    Get PDF
    Ideally, semi-distributed hydrologic models should provide better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However, the spatial distribution of model parameters raises issues related to the calibration strategy and to the identifiability of the parameters. To analyse these issues, we propose to base the evaluation of a semi-distributed model not only on its performance at streamflow gauging stations, but also on the spatial and temporal pattern of the optimised value of its parameters. We implemented calibration over 21 rolling periods and 64 catchments, and we analysed how well each parameter is identified in time and space. Performance and parameter identifiability are analysed comparatively to the calibration of the lumped version of the same model. We show that the semi-distributed model faces more difficulties to identify stable optimal parameter sets. The main difficulty lies in the identification of the parameters responsible for the closure of the water balance (i.e. for the particular model investigated, the intercatchment groundwater flow parameter)

    On the visual detection of non-natural records in streamflow time series: challenges and impacts

    Get PDF
    Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators, with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.</p

    A review of modelling methodologies for flood source area (FSA) identification

    Get PDF
    Flooding is an important global hazard that causes an average annual loss of over 40 billion USD and affects a population of over 250 million globally. The complex process of flooding depends on spatial and temporal factors such as weather patterns, topography, and geomorphology. In urban environments where the landscape is ever-changing, spatial factors such as ground cover, green spaces, and drainage systems have a significant impact. Understanding source areas that have a major impact on flooding is, therefore, crucial for strategic flood risk management (FRM). Although flood source area (FSA) identification is not a new concept, its application is only recently being applied in flood modelling research. Continuous improvements in the technology and methodology related to flood models have enabled this research to move beyond traditional methods, such that, in recent years, modelling projects have looked beyond affected areas and recognised the need to address flooding at its source, to study its influence on overall flood risk. These modelling approaches are emerging in the field of FRM and propose innovative methodologies for flood risk mitigation and design implementation; however, they are relatively under-examined. In this paper, we present a review of the modelling approaches currently used to identify FSAs, i.e. unit flood response (UFR) and adaptation-driven approaches (ADA). We highlight their potential for use in adaptive decision making and outline the key challenges for the adoption of such approaches in FRM practises

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Prediction of streamflow from the set of basins flowing into a coastal bay

    No full text
    Many coastal basins of the Brittany peninsula (France) display a high level of nitrate pollution, nine of them highlighted by the European Commission since 2007, as causing algal blooms in several coastal bays. To precisely diagnose and solve this issue the fluxes of every contributing basin have to be considered. However, this faces a strong data-scarce situation as most of the basins are ungauged. In this context, we propose to transpose hydrological information from one gauged basin to neighbouring points of interest. The methodology uses a simple geomorphology-based transfer function on the gauged basin, which allows assessment of the net rainfall time series through the de-convolution of the gauged discharge series. This net rainfall is then transposed and convoluted on the ungauged basin using its own transfer function in order to estimate discharge. This approach enables the quantification of the whole volume of freshwater entering the controversial Saint-Brieuc Bay

    Acquired activated protein C resistance in pregnancy.

    No full text
    Pregnancy induces several haemostatic perturbations. Some authors described possible acquired activated protein C resistance (APCR) during normal pregnancy. We wanted to test this possibility and to evaluate if this acquired APCR might contribute to the known increased tendency to thrombosis associated with pregnancy. To answer the first hypothesis, we tested APCR with standard and with modified (5) APTT assays; to explore the second one, we chose to test some hypercoagulability and hyperfibrinolysis markers, i.e. fibrinopeptide A (FPA), Fragment 1+2 (F1+2) and D-dimers, and to correlate them with APC-ratio

    Clustering flood events from water quality time-series using Latent Dirichlet Allocation model

    No full text
    To improve hydro-chemical modeling and forecasting, there is a need to better understand flood-induced variability in water chemistry and the processes controlling it in watersheds. In the literature, assumptions are often made, for instance, that stream chemistry reacts differently to rainfall events depending on the season; however, methods to verify such assumptions are not well developed. Often, few floods are studied at a time and chemicals are used as tracers. Grouping similar events from large multivariate datasets using principal component analysis and clustering methods helps to explain hydrological processes; however, these methods currently have some limits (definition of flood descriptors, linear assumption, for instance). Most clustering methods have been used in the context of regionalization, focusing more on mapping results than on understanding processes. In this study, we extracted flood patterns using the probabilistic Latent Dirichlet Allocation (LDA) model, its first use in hydrology, to our knowledge. The LDA method allows multivariate temporal datasets to be considered without having to define explanatory factors beforehand or select representative floods. We analyzed a multivariate dataset from a long-term observatory (Kervidy-Naizin, western France) containing data for four solutes monitored daily for 12 years: nitrate, chloride, dissolved organic carbon, and sulfate. The LDA method extracted four different patterns that were distributed by season. Each pattern can be explained by seasonal hydrological processes. Hydro-meteorological parameters help explain the processes leading to these patterns, which increases understanding of flood-induced variability in water quality. Thus, the LDA method appears useful for analyzing long-term datasets
    corecore