39 research outputs found

    Scientific opinion on a quantitative pathway analysis of the likelihood of Tilletia indica M. introduction into EU with importation of US wheat

    Get PDF
    The European Commission requested EFSA to provide a scientific opinion on the USDA APHIS quantitative pathway analysis on likelihood of Karnal bunt introduction with importation of US wheat for grain into EU and desert durum wheat for grain into Italy. EFSA was also requested to indicate whether the US bunted kernel standard would provide equivalent protection against introduction of Tilletia indica into EU, compared to the existing EU import requirement. The Panel on Plant Health reviewed pathway scenarios, model and parameters and found several shortcomings regarding model equations and parameter values, particularly a lack of scientific evidence for the infection threshold. Simulations were computed, for importations of US wheat into EU and desert durum wheat into Italy, based on original model and an updated model with revised parameter values. Model output was teliospores number per hectare on soil surface of each EU country. Simulated teliospores numbers entering EU were lower with the updated than with the original model. These results showed a high uncertainty, underestimated with the original model, over the number of teliospores entering each EU country. Sensitivity analysis showed several key parameters (proportion of bunted kernels in Arizona regulated counties, number of Arizona positive hectares and number of teliospores per bunted kernel) strongly influencing number of teliospores entering the EU. In addition, high sensitivity indices were obtained with the updated wheat model for several parameters related to EU country characteristics. Further research is needed to refine parameter values, to reduce uncertainty and to determine relationship between teliospores number on soil surface and number of bunted kernels resulting from infection of a wheat plant. The Panel concluded that the US bunted kernel standard does not provide a level of protection equivalent to EU requirements and that such level of protection could only be warranted by measures which include testing at harvest and before shipment to detect T. indica teliospores

    Statement on a heat treatment to control Agrilus planipennis

    Get PDF
    In 2011, the EFSA Panel on Plant Health was asked by the European Commission to provide an opinion on a technical file submitted by the US Authorities to support a request to list a new heat treatment (60 °C/60 min) among the EU import requirements for wood of Agrilus planipennis host plants. After a thorough analysis of the documents provided the Panel concluded that, with a low uncertainty, A. planipennis is likely to survive the proposed heat treatment of 60 °C/60 min, and that, to ensure a control level of 99 % the temperature of the heat treatment of 60 min should be higher than 70 °C. Following the publication of this scientific opinion, the US Authorities submitted a new proposal to the European Commission, consisting in a new heat treatment (71.1 °C/60 min). The EFSA Panel on Plant Health was asked to consider whether this new proposal was within the scope of the published opinion and, if not, to clarify its conclusion and indicate what data would be needed to assess the effectiveness of the new treatment. The Panel concluded that the new proposal is not within the scope of the opinion as the data provided by the US Authorities cannot be used to evaluate the effectiveness of the new proposed heat treatment. An accurate assessment of the new proposed heat treatment (71.1 °C/60 min) would require an experiment including several temperatures higher than 70 °C (one corresponding to the proposed treatment). Regarding the data requirements for assessing the effectiveness of the new treatment, the Panel lists the information required in the checklist presented in the Panel’s draft guidance document on methodology for evaluation of the effectiveness of options to reduce the risk of introduction and spread of organisms harmful to plant health in the EU territory, currently under public consultation on EFSA website

    Scientific Opinion on the phytosanitary risk associated with some coniferous species and genera for the spread of pine wood nematode

    Get PDF
    The European Commission requested the Panel on Plant Health to deliver a scientific opinion on the phytosanitary risk of plants (other than fruits and seeds) of Pinus pinea and of the genera Chamaecyparis, Cryptomeria and Juniperus for the spread of pine wood nematode (PWN) via movement of infested plants or untreated plant products or by supporting natural spread of PWN in conjunction with European species of the vector. The Panel analysed the data submitted by Portugal regarding surveys on the TrĂłia Peninsula where P. pinaster and P. pinea co-occur, and the related laboratory results of Naves et al. (2006) on feeding and oviposition preferences of Monochamus galloprovincialis. The Panel also undertook a comprehensive review of the literature. The zero infestation of PWN recorded on P. pinea on the TrĂłia Peninsula was not significantly different from the result for P. pinaster, because of the small P. pinea sample. Hence, the conclusion that P. pinea is not a host plant for PWN is not supported by the data submitted, principally because of low statistical confidence arising from the few P. pinea trees present. Moreover, the limited presence of P. pinea in the study areas means that the results are representative neither of the TrĂłia Peninsula nor of other parts of Portugal. Naves et al. (2006) recorded some oviposition by M. galloprovincialis on P. pinea, but less than on other hosts. No differences in feeding of M. galloprovincialis on P. pinaster and P. pinea were detected, thus potentially allowing PWN transmission to trees by this route. The available information regarding the genera Chamaecyparis, Cryptomeria and Juniperus as potential hosts of Monochamus spp. and PWN suggests overall a low susceptibility to PWN or its vectors; the uncertainty concerning PWN is high and would require supplementary research

    Scientific Opinion on the evaluation of the pest risk analysis on Pomacea insularum, the island apple snail, prepared by the Spanish Ministry of Environment and Rural and Marine Affairs

    Get PDF
    The Panel considers the Spanish pest risk analysis (PRA) to be clear and to provide appropriate supporting evidence. However, (i) the environmental impact assessment is incomplete and (ii) the estimates for the potentially endangered area are too limited. The Panel points out that large areas of the European Union have climatic conditions, that are very similar to those of the areas of native distribution of Pomacea spp. snails, and suitable host plants are available. The Panel agrees with the Spanish PRA on the following points with regard to the risk assessment area: (i) the potential consequences of the organism for rice crops are major; (ii) the probability for establishment of the organism is very likely and (iii) the probability of spread is estimated as likely. The Panel disagrees with the Spanish PRA on the following points and considers (i) the effects on the environment to be massive under suitable environmental conditions in the PRA area and (ii) the probability of entry of the organism to be high. Regarding risk reduction options the Panel agrees with the Spanish PRA that no single risk reduction method is sufficient to halt the introduction and spread of Pomacea spp. snails in the PRA area. However, a legislative ban on import of Pomacea spp. is the only risk reduction option identified that can reduce the probability of entry. The many other risk reduction options listed will help to reduce the probability of spread within the PRA area. The Panel considers that the risk reduction options should target the canaliculata complex, as Pomacea insularum and P. canaliculata, as well as other species from the complex, are almost indistinguishable. This is of particular importance for risk reduction options addressing both breeding and trade of the organism

    Fucans, but Not Fucomannoglucuronans, Determine the Biological Activities of Sulfated Polysaccharides from Laminaria saccharina Brown Seaweed

    Get PDF
    Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed

    Precise Centromere Positioning on Chicken Chromosome 3

    No full text
    Despite the progress of the chicken (Gallus gallus) genome sequencing project, the centromeric sequences of most macrochromosomes remain unknown. This makes it difficult to determine centromere positions in the genome sequence assembly. Using giant lampbrush chromosomes from growing oocytes, we analyzed in detail the pericentromeric region of chicken chromosome 3. Without knowing the DNA sequence, the centromeres at the lampbrush stage are detectable by immunostaining with antibodies against cohesin subunits. Immunostaining for cohesin followed by FISH with 23 BAC clones, covering the region from 0 to 23 Mb on chicken chromosome 3 (GGA3), allowed us to map the GGA3 centromere between BAC clones WAG38P15 and WAG54M22 located at position 2.3 and 2.5 Mb, respectively. This corresponds to the gap between 2 supercontigs at the 2.4-Mb position in the current GGA3 sequence assembly (build 2.1). Furthermore, we have determined that the current putative centromeric gap at position 11.6–13.1 Mb corresponds in fact to a long cluster of tandem chicken erythrocyte nuclear membrane repeats (CNM)
    corecore