33 research outputs found

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part II: The intrinsic electronic midgap states

    Full text link
    We propose a structural model that treats in a unified fashion both the atomic motions and electronic excitations in quenched melts of pnictide and chalcogenide semiconductors. In Part I (submitted to J. Chem. Phys.), we argued these quenched melts represent aperiodic ppσpp\sigma-networks that are highly stable and, at the same time, structurally degenerate. These networks are characterized by a continuous range of coordination. Here we present a systematic way to classify these types of coordination in terms of discrete coordination defects in a parent structure defined on a simple cubic lattice. We identify the lowest energy coordination defects with the intrinsic midgap electronic states in semiconductor glasses, which were argued earlier to cause many of the unique optoelectronic anomalies in these materials. In addition, these coordination defects are mobile and correspond to the transition state configurations during the activated transport above the glass transition. The presence of the coordination defects may account for the puzzling discrepancy between the kinetic and thermodynamic fragility in chalcogenides. Finally, the proposed model recovers as limiting cases several popular types of bonding patterns proposed earlier, including: valence-alternation pairs, hypervalent configurations, and homopolar bonds in heteropolar compounds.Comment: 17 pages, 15 figures, revised version, final version to appear in J. Chem. Phy

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy

    Dynamic correlations in an ordered c(2×\times2) lattice gas

    Full text link
    We obtain the dynamic correlation function of two-dimensional lattice gas with nearest-neighbor repulsion in ordered c(2×\times2) phase (antiferromagnetic ordering) under the condition of low concentration of structural defects. It is shown that displacements of defects of the ordered state are responsible for the particle number fluctuations in the probe area. The corresponding set of kinetic equations is derived and solved in linear approximation on the defect concentration. Three types of strongly correlated complex jumps are considered and their contribution to fluctuations is analysed. These are jumps of excess particles, vacancies and flip-flop jumps. The kinetic approach is more general than the one based on diffusion-like equations used in our previous papers. Thus, it becomes possible to adequately describe correlations of fluctuations at small times, where our previous theory fails to give correct results. Our new analytical results for fluctuations of particle number in the probe area agree well with those obtained by Monte Carlo simulations.Comment: 10 pages, 7 figure

    Crystal Structure and Li-Ion Transport in Li<sub>2</sub>CoPO<sub>4</sub>F High-Voltage Cathode Material for Li-Ion Batteries

    No full text
    In this work, we provide a structural and computational investigation of the Li<sub>2</sub>CoPO<sub>4</sub>F high-voltage cathode material by means of neutron powder diffraction (SG <i>Pnma</i>, <i>a</i> = 10.4528(2) Å, <i>b</i> = 6.38667(10) Å, <i>c</i> = 10.8764(2) Å, <i>R</i><sub>F</sub> = 0.0145), crystal chemistry approaches (Voronoi–Dirichlet partitioning and bond valence sums mapping), and density functional theory. The material reveals low energy barriers (0.12–0.43 eV) of Li hopping and a possible 3D channel system for Li-ion migration. It is found that only one Li per formula unit can be extracted within the potential stability window of the commercially available electrolytes. The interrelation between dimensionality, topology and energetics of Li-ion diffusion and peculiarities of the Li<sub>2</sub>CoPO<sub>4</sub>F crystal structure are discussed in detail
    corecore